

INFLUÊNCIA DA GRANULOMETRIA, CONCENTRAÇÃO DE SÓLIDOS E COMPOSIÇÃO MINERALÓGICA NAS PROPRIEDADES REOLÓGICAS E VARIÁVEIS DE TRANSPORTE DE POLPA DE BAUXITA POR MINERODUTO

SEBASTIÃO MARTINS BRUM

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, PRODERNA/ITEC, da Universidade Federal do Pará, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia de Recursos Naturais.

Orientador: José Antônio da Silva Souza

Belém 2017

Dados Internacionais de Catalogação na Publicação (CIP)

Brum, Sebastião Martins, 1955

Influência da granulometria, concentração de sólidos e composição mineralógica nas propriedades reológicas e variáveis de transporte de polpa de bauxita por mineroduto/Sebastião Martins Brum.- 2017.

Orientador: José Antonio da Silva Souza

Tese (Doutorado) - Universidade Federal do Pará. Instituto de Tecnologia. Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, Belém,2017

1. Reologia 2. Bauxita 3. Escoamento 4. Minérios- Transporte I. Título

CDD 22.ed.531.1134

INFLUÊNCIA DA GRANULOMETRIA, CONCENTRAÇÃO DE SÓLIDOS E COMPOSIÇÃO MINERALÓGICA NAS PROPRIEDADES REOLÓGICAS E VARIÁVEIS DE TRANSPORTE DE POLPA DE BAUXITA POR MINERODUTO

Sebastião Martins Brum

TESE SUBMETIDA AO CORPO DOCENTE DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE RECURSOS NATURAIS DA AMAZÔNIA (PRODERNA/ITEC) DA UNIVERSIDADE FEDERAL DO PARÁ COMO PARTE DOS REQUISITOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA DE RECURSOS NATURAIS.

Examinada por:

Prof. José Antônio da Silva Souza, D. Eng. (PRODERNA / ITEC / UFPA - Orientador)

Prof. Emanuel Negrão Macêdo, D. Sc. (PRODERNA / ITEC – UFPA - Coorientador)

Prof. João Nazareno Nonato Quaresma, D. Sc. (PRODERNA / ITEC / UFPA – Membro)

Prof. Rui Nelson Otoni Magno, D. Eng. (FEQ / ITEC / UFPA - Membro)

Prof^a. Augusta Maria Paulain Ferreira Felipe, D. Eng. (FEQ / ITEC / UFPA - Membro)

> Prof. Arthur Pinto Chaves, D. Sc. (USP/SP - Membro)

Belém 2017

DEDICATÓRIA

Aos meus Saudosos Entes Queridos: Minha Avô Sinhá e Meus Pais Antônio Brum e Dona Zica.

AGRADECIMENTOS

Agradeço a Deus que me concedeu força, saúde e paz para vencer todos os meus desafios.

Ao meu Orientador Professor Doutor José Antônio da Silva Souza, pela paciência, ótimas ideias e forma competente de orientação a este trabalho.

A Professora Doutora Augusta Maria Paulain Ferreira Felipe pelo incentivo à minha participação neste notável Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia.

Ao Professor Doutor Emanuel Negrão Macêdo por sua prazerosa disponibilidade em colaborar e orientar em todos os momentos a que recorri.

Aos Professores Doutores João Nazareno Nonato Quaresma e Rui Nelson Otoni Magno pela especial orientação a finalização deste trabalho.

Um agradecimento muito especial ao Professor Doutor Arthur Pinto Chaves por sua pronta disponibilidade em participar da Banca Examinadora, enriquecendo sobremaneira este meu trabalho.

Aos Colegas Dilson Cardoso e André Mileo pelo incentivo, auxílio e companheirismo.

À Universidade Federal do Pará, pelos conhecimentos adquiridos ao longo destes últimos seis anos.

À minha esposa Nadir Otília e nossas filhas Nádia Luiza e Natália Luiza, pelo amor, carinho, compreensão, incentivo e total apoio em todos os momentos.

"O sucesso nasce do querer, da determinação e persistência em se chegar a um objetivo. Mesmo não atingindo o alvo, quem busca e vence obstáculos, no mínimo fará coisas admiráveis".

José de Alencar

"Como não ter Deus?! Com Deus existindo, tudo dá esperança: sempre um milagre é possível, o mundo se resolve. Mas, se não tem Deus, há-de a gente perdidos no vai-vem, e a vida é burra. É o aberto perigo das grandes e pequenas horas, não se podendo facilitar, é todos contra os acasos. Tendo Deus, é menos grave se descuidar um pouquinho, pois no fim dá certo".

Guimarães Rosa

Viver é acalentar sonhos e esperanças, fazendo da fé a nossa inspiração maior. É buscar nas pequenas coisas, um grande motivo para ser feliz!

Mario Quintana

Resumo da Tese apresentada ao PRODERNA/UFPA como parte dos requisitos necessários para obtenção do grau de Doutor em Engenharia de Recursos Naturais (D. Eng.)

INFLUÊNCIA DA GRANULOMETRIA, CONCENTRAÇÃO DE SÓLIDOS E COMPOSIÇÃO MINERALÓGICA NAS PROPRIEDADES REOLÓGICAS E VARIÁVEIS DE TRANSPORTE DE POLPA DE BAUXITA POR MINERODUTO

Sebastião Martins Brum

Orientador: José Antônio da Silva Souza, D. Eng.

Área de Concentração: Uso e Transformação de Recursos Naturais

O fluxo de mistura sólido-líquido por tubulações depende de variáveis e parâmetros, os quais estão relacionados ao sólido a transportar (granulometria; densidade; forma e dureza); o fluido transportador (densidade e viscosidade); a instalação (diâmetro interno da tubulação; comprimento; desnível; rugosidade; ângulos de inclinação; singularidades e etc); a mistura (densidade e concentração de sólidos) e ao sistema (toneladas de sólido a transportar; velocidade de fluxo e perda de carga).

Neste contexto, visando o entendimento da influência das características da bauxita de Paragominas sobre o transporte de polpa, foram realizados experimentos envolvendo loop de bombeamento, permeametria e reologia além de ensaios de granulometria por peneiramento convencional, granulometria por difração a laser (Malvern) e caracterização em MEV e FRX.

Polpas denominadas grossos, finos e composta, nas concentrações de sólidos em peso (60%; 50%; 40% e 30%) foram trabalhadas nos ensaios.

O objetivo deste estudo consistiu em caracterizações reológica e de fluxo destas frações granulométricas de polpas de bauxita em transporte turbulento por tubulações, verificando o efeito da granulometria, forma e constituição das particulas e concentração de sólidos na queda de pressão de trabalho, na determinação dos fatores de atrito e velocidades de deposição dos sólidos, de maneira a mensurar as inter-relações e similaridades entre estas frações.

Finalizando, os resultados dos fatores de atrito experimentais em fluidos de lei da potência (nos regimes laminar e turbulento) e fluidos Bingham (nos regimes laminar e turbulento) são comparados a fatores de atrito calculados segundo: equação de Fanning (1877); correlação de Dodge e Metzner (1959); equação de Buckingham Reiner (1921) e correlação empírica desenvolvida por Darby & Melson (1981).

Por meio dos resultados apresentados e discutidos neste trabalho, foi possivel avaliar as variáveis envolvidas no movimento destas frações de polpas através de tubulações, comprovando que estas variáveis podem ser relacionadas em conformidade aos Estudos de Graf, Robinson e Yucel (1970) e na Forma Funcional da Queda de Pressão em Tubulações.

Palavras-chave: Bauxita; Escoamento Turbulento; Fatores de Atrito; Modelos Reológicos de Lei da Potência e Bingham; Permeametria; Reologia

Abstract of Thesis presented to PRODERNA/UFPA as a partial fulfillment of the requirements for the degree of Doctor of Natural Resources Engineering (D. Eng.)

INFLUENCE OF GRANULOMETRY, SOLID CONCENTRATION AND MINERALOGICAL COMPOSITION IN THE RHEOLOGICAL PROPERTIES AND TRANSPORT VARIABLES OF BAUXITE PULP BY PIPELINE.

Sebastião Martins Brum

Advisor: José Antônio da Silva, D. Eng.

Area of Concentration: Use and Transformation of Natural Resources

The flow of solid-liquid mixture per pipeline depends on a large number of variables and parameters, which are related to the solid to be transported (granulometry, density, shape and hardness); to the carrier fluid (density and viscosity); the installation (inner diameter of the pipe, length, slope, roughness, inclination angles, singularities and etc); the mixture (density and solids concentration) and the system (tons of solid to be transported, flow velocity and pressure drop).

In this context, aiming to understand the influence of Paragominas bauxite characteristics on pulp transport, a series of experiments involving pumping loop, permeametry and rheology were carried out in addition to standard granulometry tests, laser diffraction granulometry (Malvern) and characterization in MEV and XRF. Pulps named thick, thin and composite, in the concentrations of solids by weight (60%, 50%, 40% and 30%) were worked out in the tests.

The objective of this study was to study rheological and flow of these fractions of bauxite pulp in turbulent transport by pipelines, verifying the effect of particle size, particle shape and composition and solids concentration on the drop of working pressure, in the determination of the friction factors and deposition velocities of the solids, in order to measure the interrelationships and similarities between these fractions.

Finally, the results of experimental friction factors for Power L

aw fluids (in the laminar and turbulent regimes) and Bingham fluids (in the laminar and turbulent regimes) are compared to the friction factors calculated according to Fanning's equation (1877); Dodge and Metzner correlation (1959); Buckingham Reiner's equation (1921) and empirical correlation developed by Darby & Melson (1981).

By means of the results presented and discussed in this work, it was possible to evaluate the variables involved in the movement of these fractions of pulps through pipes, proving that these variables can be related in accordance with Graf, Robinson and Yucel (1970) and the Functional Form of the Pressure Drop in Pipes.

Keywords: Bauxite; Turbulent Flow; Friction Factors; Power Law and Bingham Rheological Models; Permeametry; Rheology

SUMÁRIO

CAPÍTULO 1 - INTRODUÇÃO		1
1.1	CONSIDERAÇÕES GERAIS	1
1.2	JUSTIFICATIVA E MOTIVAÇÃO	3
1.3	OBJETIVOS	5
1.4	ORGANIZAÇÃO DO TRABALHO	6
CAPÍTUL	.O 2 - REVISÃO DA LITERATURA	8
2.1	INTRODUÇÃO	8
2.2	CARACTERIZAÇÃO DA FORMA E TAMANHO DE PARTICULAS MINERAIS	8
2.3	PRINCIPAIS MÉTODOS PARA A DETERMINAÇÃO DO TAMANHO DE PARTICULAS	9
2.4	FORMA DAS PARTICULAS	12
2.5	DETERMINAÇÃO DA ESFERICIDADE DE PARTICULAS ATRAVÁS DA PERMEAMETRIA	13
2.6	FLUIDINÂMICA DE PARTICULAS SÓLIDAS	15
2.6.1	Interação entre particulas	20
2.6.2	Difusão Browniana	21
2.7	REOLOGIA	21
2.7.1	Viscosimetria	21
2.7.2	Modelos Reológicos	22
2.7.2.1	Fluidos Inelásticos	22
2.7.2.2	Fluidos Viscoelásticos e Soluções Poliméricas	25
2.7.3	Reologia das Polpas Minerais	26
2.8	TRANSPORTE HIDRÁULICO DE POLPAS MINERAIS	29
2.8.1	Descrição Geral do Processo	29
2.8.2	Bombas Para Polpas Minerais	30
2.8.3	Variáveis do Sistema	32
2.8.4	Regimes de Fluxo	32
2.8.5	Regimes de Escoamento	35
2.8.6	Velocidade Limite de Escoamento	36
2.8.6.1	Velocidade de Deposição	37
2.8.6.2	Velocidade de Transição	41

2.9	PROPRIEDADES FÍSICAS DAS POLPAS MINERAIS	42
2.10	EQUAÇÕES BÁSICAS DA FLUIDODINÂMICA DAS POLPAS MINERAIS	46
2.11	DETERMINAÇÃO DAS PERDAS DE CARGA – FATORES DE ATRITO	51
2.11.1	Introdução	51
2.11.2	Perda de carga distribuida, hd	52
2.11.2.1	Fator de atrito para fluidos newtonianos	52
2.11.2.2	Fator de atrito para fluidos não-newtonianos	56
2.11.3	Perda de carga localizada, h₅	63
2.12	USO DE POLIMEROS REDUTORES DE ARRASTE	65
2.13	RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LÍQUIDO NO BOMBEAMENTO	65
CAPÍTUL	O 3 - MATERIAIS E MÉTODOS	68
3.1	MATERIAIS	68
3.1.1	Propriedades das Polpas Estudadas	68
3.1.2	Unidade Experimental para o Bombeamento de Polpas Minerais	69
3.1.3	Unidade Experimental para a Determinação da Esfericidade	73
3.2	MÉTODOS	74
3.2.1	Ensaios de Bombeamento de Polpas Minerais	74
3.2.1.1	Procedimentos Iniciais	74
3.2.1.2	Incerteza nos Experimentos de Bombeamento	76
3.2.1.3	Determinação da Velocidade Critica de Fluxo (V _C)	78
3.2.1.4	Determinação da Perda de Carga	79
3.2.1.5	Deterninação Experimental do Gradiente de Fluxo dos Sólidos	80
3.2.1.6	Levantamento da Curva da Perda de Carga por Metro de Tubo Horizontal em Função da Velocidade de Fluxo da Polpa	81
3.2.2	Determinação da Esfericidade das Particulas Minerais	81
3.2.3	Análise Granulométrica	83
3.2.3.1	Técnica do Peneiramento a Úmido	83
3.2.3.2	Técnica da Difração a Laser	83
3.2.4	Microscopia Eletrônica da Varredura (MEV)	83
3.2.5	Ensaios em Fluorescência de Raios X – FRX	84

3.2.6	Avaliações Reológicas	84
3.2.6.1	Metodologia de Execução dos Ensaios	84
3.2.6.2	Calibração do Equipamento	84
3.2.6.3	Metologia da Incerteza dos Ensaios Reológicos	85
3.2.7	Ensaios de Picnometria	87
3.3	METODOLOGIAS DE RESOLUÇÃO DOS FATORES DE ATRITO	88
3.3.1	Introdução	88
3.3.2	Metodologia de solução da equação do fator de atrito segundo o modelo de lei da potência	88
3.3.3	Metodologia de solução da equação do fator de atrito segundo o modelo Bingham	88
3.4	ESTUDOS ACADÊMICOS DE SUPORTE AOS TRABALHOS	89
3.4.1	Dissertação de mestrado	89
3.4.2	Trabalho de conclusão de curso – TCC	89
3.4.3	Dissertação de mestrado do autor desta tese	89
3.5	RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LIQUIDO NO BOMBEAMENTO	90
3.5.1	Metodologia do trabalho	90
CAPÍTUL	.O 4 - RESULTADOS E DISCUSSÃO	91
4.1	ENSAIOS REOLÓGICOS EXPERIMENTAIS	91
4.1.1		
	Caracterização reológica das frações ensaiadas	91
4.1.2	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios	91 99
4.1.2 4.2	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO	91 99 101
4.1.2 4.2 4.2.1	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução	91 99 101 101
4.1.24.24.2.14.2.2	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc)	91 99 101 101 101
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP	91 99 101 101 101 102
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP Perda de carga por metro linear de tubulação horizontal	91 99 101 101 101 102 105
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP Perda de carga por metro linear de tubulação horizontal Gradiente de fluxo dos sólidos	91 99 101 101 101 102 105 112
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP Perda de carga por metro linear de tubulação horizontal Gradiente de fluxo dos sólidos ENSAIOS EXPERIMENTAIS DE ESFERICIDADE	91 99 101 101 102 105 112 114
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.4 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP Perda de carga por metro linear de tubulação horizontal Gradiente de fluxo dos sólidos ENSAIOS EXPERIMENTAIS DE ESFERICIDADE ANÁLISE GRANULOMÉTRICA	91 99 101 101 102 105 112 114 117
 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.4 4.4.1 	Caracterização reológica das frações ensaiadas Verificação do ajuste do equipamento quanto à incerteza dos ensaios ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO Introdução Velocidade critica de fluxo (Vc) Comparação entre ensaios de loop de bombeamento MPSA e USP Perda de carga por metro linear de tubulação horizontal Gradiente de fluxo dos sólidos ENSAIOS EXPERIMENTAIS DE ESFERICIDADE ANÁLISE GRANULOMÉTRICA Técnica do Peneiramento a Úmido	91 99 101 101 102 105 112 114 117 117

4.5	ENSAIOS EM FLUORESCÊNCIA DE RAIOS X – FRX	119
4.6	MICROSCOPIA ELETRÔNICA DE VARREDURA - MEV	120
4.7	ENSAIOS DE PICNOMETRIA	122
4.8	ESTUDOS ACADÊMICOS DE SUPORTE AOS TRABALHOS	122
4.8.1	Dissertação de mestrado	122
4.8.1.1	Proposta de trabalho	122
4.8.1.2	Estudos e Ensaios	122
4.8.1.3	Conclusões	123
4.8.2	Trabalho de conclusão de curso – TCC	123
4.8.2.1	Proposta de trabalho	123
4.8.2.2	Estudos e Ensaios	123
4.8.2.3	Conclusões	123
4.8.3	Dissertação de mestrado do autor desta tese	124
4.8.3.1	Proposta de trabalho	124
4.8.3.2	Estudos e Ensaios	124
4.8.3.3	Conclusões	124
4.9	RESULTADOS E DISCUSSÃO DOS FATORES DE ATRITO	125
4.9.1	Considerações	125
4.9.2	Calibração da Unidade Experimental	125
4.9.3	Fatores de Atrito da Fração de Grossos	127
4.9.4	Fatores de Atrito da Fração de Finos	129
4.9.5	Fatores de Atrito da Fração Composta	131
4.9.6	Tratamento Estatístico dos Fatores de Atrito	133
4.10	RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LIQUIDO NO BOMBEAMENTO	137
CAPÍTUI	LO 5 - CONCLUSÕES E SUGESTÕES	142
5.1	CONCLUSÕES	142
5.2	SUGESTÕES PARA TRABALHOS FUTUROS	143

REFERÊNCIAS BIBLIOGRÁFICAS	144
APÊNDICE A – RESULTADOS EXPERIMENTAIS DO LOOP DE BOMBEAMENTO	149
APÊNDICE B – RESULTADOS EXPERIMENTAIS DA DETERMINAÇÃO DA ESFERICIDADE POR PERMEAMETRIA	153
APÊNDICE C - RESULTADOS EXPERIMENTAIS DOS ENSAIOS DE REOLOGIA-FRAÇÃO GROSSOS	155
APÊNDICE D - RESULTADOS EXPERIMENTAIS DOS ENSAIOS DE REOLOGIA-FRAÇÃO FINOS	156
APÊNDICE E - RESULTADOS EXPERIMENTAIS DOS ENSAIOS DE REOLOGIA - COMPOSTA	157
APÊNDICE F – CILINDRO COAXIAL E SUAS DEFINIÇÕES	158
APÊNCIDE G - RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – FRAÇÃO GROSSOS	162
APÊNDICE H – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – FRAÇÃO FINOS	163
APÊNDICE I – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO –COMPOSTA	164
APÊNDICE J – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – CALIBRAÇÃO COM ÁGUA	165
APÊNDICE K - RESULTADOS DA AMOSTRAGEM DO GRADIENTE DE FLUXO DOS SÓLIDOS NA UNIDADE DE LOOP DE BOMBEAMENTO	166

LISTA DE FIGURAS

Figura 1.1	Malha de mineroduto no mundo	3
Figura 2.1	Componentes da força de resistência fluidodinâmica e de sustentação sobre uma particula	18
Figura 2.2	Reogramas de diferentes tipos de fluidos	24
Figura 2.3	Principais modelos encontrados na literatura	24
Figura 2.4	Curvas de fluxo (A) e de viscosidade (B) – Exemplo de tixotropia	25
Figura 2.5	Corte de uma bomba de deslocamento positivo	31
Figura 2.6	Bomba centrifuga para polpa abrasiva, série AH	32
Figura 2.7	Distribuição de partículas e do gradiente de concentração de sólidos em diferentes regimes de escoamento	33
Figura 2.8	Diagrama de regime de fluxo no escoamento de polpa mineral	34
Figura 2.9	Variação do fluxo em função da densidade e tamanho de partículas	35
Figura 2.10	Regimes de escoamento	36
Figura 2.11	Velocidades de transição e deposição do fluido	37
Figura 2.12	Variação do parâmetro F∟ em função da granulometria (d₅₀) e da concentração	38
Figura 2.13	F∟ para material uniforme	39
Figura 2.14	F∟ para material não uniforme	39
Figura 2.15	Distribuição da concentração de sólidos no perfil da tubulação para polpa não-sedimentária	44
Figura 2.16	Distribuição da concentração de sólidos no perfil da tubulação para polpa sedimentária	44
Figura 2.17	Distribuição da concentração de sólidos no perfil da tubulação	45
Figura 2.18	Comparação dos efeitos relativos de concentração e velocidade de transporte	46
Figura 2.19	Volume de controle	47
Figura 2.20	Aplicação da equação de Bernoulli em um sistema simples	50
Figura 2.21	Aplicação da equação de Bernoulli em um sistema complexo	51
Figura 2.22	Fator de atrito de Fanning para fluidos	54

Figura 2.23	Fator de atrito de Fanning para escoamento de fluidos não- newtonianos	58
Figura 2.24	Representação Gráfica da Equação 2.102	67
Figura 3.1	Amostras de polpa em bombonas de 200 litros	69
Figura 3.2	Esboço da unidade de loop de bombeamento do LFQI/USP	70
Figura 3.3	Unidade de loop e sistemas de caixa de polpa e calhas	71
Figura 3.4	(a) Calha distribuidora; (b) Vista frontal da divisão da seção da tubulação	72
Figura 3.5	Caixa de amostragem: (a) Compartimentos acoplados; (b) Compartimentos individualizados	72
Figura 3.6	Esquema do permeâmetro experimental de determinação da esfericidade das partículas minerais	73
Figura 3.7	Foto da unidade experimental de medição do grau de esfericidade das partículas minerais	74
Figura 3.8	Representação dos setores com base nas relações com o diâmetro do tubo (D)	80
Figura 3.9	Curva de calibração do viscosímetro	85
Figura 3.10	Geometria do aparelho	86
Figura 3.11	Geometrias do copo e sensor	86
Figura 4.1	Curvas de fluxo e viscosidade – 50% sólidos – Polpa Grossos - Modelo Lei da Potência, escala logarítmica	92
Figura 4.2	Curvas de viscosidade e fluxo da polpa de grossos nas concentrações mássicas estudadas	93
Figura 4.3	Curvas de fluxo e viscosidade – 50% sólidos – Polpa Finos - Modelo Bingham	94
Figura 4.4	Curvas de viscosidade e fluxo da polpa de finos nas concentrações mássicas estudadas	95
Figura 4.5	Curvas de fluxo e viscosidade – 50% sólidos – Polpa Composta - Modelo Bingham	97
Figura 4.6	Curvas de viscosidade e fluxo da polpa composta nas concentrações mássicas estudadas	98
Figura 4.7	Gráfico de incertezas polpa grossos - 50% sólidos	99
Figura 4.8	Gráfico de incertezas polpa finos – 50% sólidos	100

Figura 4.9	Gráfico de incertezas polpa composta – 50% sólidos	100
Figura 4.10	Material retido em frente ao PIG	103
Figura 4.11	Gradiente de pressão versus velocidade de fluxo nas unidades de loop MPSA e USP	104
Figura 4.12	Gradiente de pressão em função da velocidade de fluxo para a fração de grossos	105
Figura 4.13	Gradiente de pressão em função da vazão volumétrica para a fração de grossos	106
Figura 4.14	Gradiente de pressão em função da velocidade de fluxo para a fração de finos	106
Figura 4.15	Gradiente de pressão em função da vazão volumétrica para a fração de finos	107
Figura 4.16	Gradiente de pressão em função da velocidade de fluxo para a composta	107
Figura 4.17	Gradiente de pressão em função da vazão volumétrica para a composta	108
Figura 4.18	Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 60% de sólidos	109
Figura 4.19	Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 60% de sólidos	109
Figura 4.20	Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 50% de sólidos	110
Figura 4.21	Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 50% de sólidos	110
Figura 4.22	Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 40% de sólidos	111
Figura 4.23	Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 40% de sólidos	111
Figura 4.24	Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 30% de sólidos	112
Figura 4.25	Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 30% de sólidos	112
Figura 4.26	Curvas da Permeametria - Calibração e Ensaios	116
Figura 4.27	Gráfico da análise granulométrica da amostra composta	117
Figura 4.28	Ensaio de granulometria da fração de Grossos em Malvern	118

Figura 4.29	Ensaio de granulometria da fração de Finos em Malvern	118
Figura 4.30	Ensaio de granulometria da fração Composta em Malvern	119
Figura 4.31	Frações Grossos (48 #; 65 #; 100 #; 150 #)	120
Figura 4.32	Frações Finos (200 #; 270 #; 325 #; 400 #)	121
Figura 4.33	Fração -400# em aumento de 100X	121
Figura 4.34	Fração -400# em aumento de 500X	121
Figura 4.35	Fatores de atrito em função do número de Reynolds - Água	126
Figura 4.36	Fatores de atrito experimentais x modelados - Água	127
Figura 4.37	Correlação entre os fatores experimentais e modelados – Fração Grossos 30% e 40% sólidos	128
Figura 4.38	Correlação entre os fatores experimentais e modelados – Fração Grossos 50% e 60% sólidos	128
Figura 4.39	Fatores de atrito x Re _{MR} – Grossos – 60% sólidos	129
Figura 4.40	Correlação entre os fatores experimentais e modelados – Fração Finos 30% e 40% sólidos	130
Figura 4.41	Correlação entre os fatores experimentais e modelados – Fração Finos 50% e 60% sólidos	130
Figura 4.42	Fatores de atrito x Re _{MR} – Finos – 60% sólidos	131
Figura 4.43	Correlação entre os fatores experimentais e modelados – Composta 30% e 40% sólidos	132
Figura 4.44	Correlação entre os fatores experimentais e modelados – Composta 50% e 60% sólidos	132
Figura 4.45	Fatores de atrito x RemR – Composta – 60% sólidos	133
Figura 4.46	Razão Média dos Fatores de Atrito	134
Figura 4.47	Variação Média (%) dos Fatores de Atrito	135
Figura 4.48	Gráfico de Erros da Fração de Grossos	136

Figura 4.49	Gráfico de Erros da Fração de Finos	136
Figura 4.50	Gráfico de Erros da Fração Composta	136
Figura 4.51	Concentração como parâmetro (a)	138
Figura 4.52	Diâmetro das partículas como parâmetro (b)	139
Figura 4.53	Exemplos adicionais de variáveis do gráfico (b)	141

LISTA DE TABELAS

Tabela 2.1	Principais métodos utilizados para análise granulométrica	9
Tabela 2.2	Equações, parâmetros reológicos e exemplos de fluidos não- newtonianos	24
Tabela 2.3	Correlações para viscosidade de polpas	29
Tabela 2.4	Correlações para o fator de atrito turbulento de fluidos newtonianos	55
Tabela 2.5	Valores de singularidades K	65
Tabela 3.1	Classificação granulométrica das amostras ensaiadas	68
Tabela 3.2	Componentes da unidade de loop de bombeamento	71
Tabela 3.3	Propriedades das polpas ensaiadas	76
Tabela 3.4	Dimensões do sensor e copo do viscosímetro Haake–VT 550	86
Tabela 4.1	Caraterização Reológica – Polpa de Grossos	91
Tabela 4.2	Caraterização Reológica – Polpa de Finos	94
Tabela 4.3	Caraterização Reológica – Polpa Composta	96
Tabela 4.4	Estatística da incerteza nos experimentos	99
Tabela 4.5	Resumo dos ensaios do loop de bombeamento	102
Tabela 4.6	Loop MPSA x Loop USP – Polpa 50% sólidos	104
Tabela 4.7	Valores da distribuição de sólidos ao longo da seção transversal do tubo	114
Tabela 4.8	Resumo dos Parâmetros dos Ensaios da Permeametria	115
Tabela 4.9	Resultados da Permeametria	116
Tabela 4.10	Determinação do Grau de Esfericidade	116
Tabela 4.11	Análise Granulométrica das Amostras de Polpa	117
Tabela 4.12	Ensaios em Fluorescência de Raios X	119
Tabela 4.13	Densidade Relativa dos Grãos	122
Tabela 4.14	Fatores de Atrito – Calibração da Unidade Experimental com Água	125

Tabela 4.15	Fatores de Atrito Experimentais e Modelados - Água	126
Tabela 4.16	Tratamento Estatístico dos Fatores de Atrito	134
Tabela 4.17	Variáveis do Gráfico (a)	138
Tabela 4.18	Variáveis do Gráfico (b)	139
Tabela 4.19	Exemplos Adicionais de Variáveis do Gráfico (b)	140

NOMENCLATURA

ABNT	Associação Brasileira de Normas Técnicas	
ANDREASEN	Pipeta de Andreasen	
CETÉM	Centro de Tecnologia Mineral	
CMC	Carboximetilcelulose	
CPRM	Companhia de Pesquisa de Recursos Minerais	
CYCLOSIZER	Ciclopeneirador	
DIN	Norma DIN – Instituto Alemão de Padronização	
DLVO	Metodologia de Análise de Energia de Integração dos Colóides	
DRX	Difração de raios-x	
DWYER	Dwyer Instruments, Inc.	
ECM	ECM-Engenharia e Consultoria Minerais	
EDS	Espectrômetro de Raios-X Dispersivo em Energia	
FANEM	FANEM – Equipamentos Médicos e de Laboratório	
FORTRAN	Formula Translation	
GGS	Gates-Gaudin-Schuhmann	
HAAKE	Modelos de Instrumentos da Marca ReoTerm	
LCT	Laboratório de Caracterização Tecnológica	
LFQI	Laboratório de Fenômenos de Transporte e Química de Interfaces Aplicados a Engenharia Mineral	
MALVERN	Malvern Instruments Ltd	
MEV	Microscopia Eletrônica de Varredura	
MPSA	Mineração Paragominas S/A.	
OF	Overflow	
OP 400	Óleo mineral	
OS	Oversize	
PAN alytical	Laboratory instruments and on-line analyzers	
PATTROL	Laboratório de solos de investigações geotécnicas	
PIG	Pipeline Inspection Gauge	
PMI	Departamento de Engenharia de Minas e de Petróleo	
POLI	Escola Politécnica da Universidade de São Paulo (EPUSP)	
PSI	Pipeline Systems Incorporated	
ROM	Run of Mine	

RRB	Rosin-Rammler-Bennet	
SI	Sistema Internacional de Unidades	
SOGREAH	Estudos Grenoble Hidráulica e Aplicações	
TCC	Trabalho de Conclusão de Curso	
TYLER	Série Tyler de 14 peneiras com abertura em mesh	
UF	Underflow	
UFPA	Universidade Federal do Pará	
US	Undersize	
USBM	United States Bureau of Mines	
USP	Universidade de São Paulo	
VT 550	Modelo de viscosímetro da Marca HAAKE	
WARMAN	Bombas Warman, pertencentes ao Grupo Weir	
WORTHINGTON	Worthington Industries	
X-DLVO	DLVO Estendida	
FRX	Fluorescência de Raios X	
ZEISS	Carl Zeiss Optic Ltd	

LISTA DE SÍMBOLOS

Alfabeto Romano

А	Área projetada de partícula	
AE	Área de entrada	
AS	Área de saída	
3H ₂ O	Água	
Al ₂ O ₃	Alumina	
Al ₂ O ₃ .2SiO ₂ .2H ₂ O	Caulinita	
$AI_2O_3.3H_2O$	Bohemita; Diásporo	
AI2O33H2O	Gibbsita	
Fe ₂ O ₃	Hematita	
FeO(OH)	Goetita ou limonita	
SiO ₂	Quartzo	
TiO ₂	Anatásio	
В	Fator de forma das partículas	
°C	Temperatura em graus Celsius	
Pa	Pascal	
рН	Potencial de hidrogênio	
rpm	Rotações por minuto	
t	Tempo	
Δt	Intervalo de tempo	
т	Temperatura	
$\frac{du}{dy}$	Gradiente de velocidade ou taxa de cisalhamento	
#	Mesh	
С	Concentração volumétrica ou mássica das partículas	
Cd	Coeficiente de resistência ou de arraste	
Cu	Coeficiente de uniformidade	
CNU	Coeficiente de não uniformidade	
Cv	Concentração em volume	
Cw	Concentração em peso	

Diâmetro de tubulação Diâmetro médio de Sauter	
Diâmetro médio de Sauter	
Dalton (peso molecular)	
Massa específica da polpa	
Diâmetro da partícula	
Diâmetro volumétrico	
Diâmetro de área	
Potencial de oxidação-redução e potencial hidrogeniônico	
Parâmetro de sustentação das partículas (Expressão de V _D)	
Fator de atrito experimental	
Fator de atrito modelado	
Torque	
Fator de atrito de Fanning	
Fator de atrito de Darcy	
Força de resistência	
Aceleração da gravidade	
Número de Hedstrom	
Carga fornecida pela bomba	
Altura total de energia (m)	
Perda de carga continua por metro de tubulação	
Índice de consistência do fluido	
Massa de polpa (sólido + água)	
Massa de sólido seco	
Massa de liquido	
Índice de comportamento do escoamento do fluido	
Perda de carga por comprimento linear da tubulação	
Altura de pressão (m)	
Perfil de concentração de sólidos (%)	
Vazão	
Coeficiente de Determinação	
Número de Reynolds generalizado	

Resm	Número de Reynolds de Shaver & Merrill
Rec	Número de Reynolds critico
Re _{MR}	Número de Reynolds segundo Metzner e Reed
Re _p	Número de Reynolds das partículas
Sv	Superfície especifica da matriz porosa
Tyler	Escala granulométrica
u	Velocidade do fluido não perturbado
V	Velocidade
VL	Velocidade limite de deposição das partículas
VD	Velocidade crítica de deposição
VT	Velocidade crítica de transição
V∞, irreg.	Velocidade terminal de sedimentação de partículas de formato irregular
V∞, esf.	Velocidade terminal de sedimentação de partículas de formato esférico
Vp	Volume da polpa
VC	Volume de controle
Vs	Velocidade terminal de partículas
Z	Cota geométrica (m)

Símbolos gregos

Esfericidade (fator de forma das partículas)
Fator de forma cinemático das partículas
Rugosidade das tubulações
Razão entre raios (=Ra/Ri) no viscosímetro
Porosidade
Concentração volumétrica de sólidos na fase diluída
Concentração volumétrica dos sólidos no empacotamento
Fator de forma volumétrica
Número pi
Tensão de cisalhamento
Tensão limite de escoamento
Viscosidade cinemática

ρ	Massa específica	
$ au_{ m w}$	Tensão de cisalhamento na parede	
γ̈́	Gradiente de velocidade ou taxa de cisalhamente	
η	Viscosidade aparente	
μ	Viscosidade	
μ _f	Viscosidade do fluido carreador	
μ _p	Viscosidade plástica (dinâmica)	
μm	Micrômetro	
μ _p	Coeficiente de rigidez ou viscosidade plástica	
Ϋ́L	Peso especifico da água	
γs	Peso especifico dos sólidos	
ρs	Massa especifica dos sólidos	
ρL	Massa especifica do líquido	

CAPÍTULO 1

INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS

O transporte de misturas sólido-liquido através de mineroduto vem ganhando maior destaque e aplicação mundial nos últimos anos, principalmente por se mostrar como um tipo de transporte econômico, de maior confiabilidade operacional e menor impacto ambiental em comparação com outros tipos de transporte de minérios de longa distância, apesar do relativo investimento inicial.

O uso de dutos metálicos como meio de transporte para polpa de minério, petróleo e outras substancias teve início na América do Norte, por volta de 1865 e atualmente, é empregado em nível mundial, inclusive no Brasil, sendo fundamental para a economia o seu transporte sob a forma de polpa, via minerodutos, com maior atratividade considerando-se que:

- O Brasil é um país com grande extensão territorial em que a atividade de mineração se encontra, geralmente, distante dos centros de produção ou de consumo do país;
- O transporte de minérios pela malha rodoviária ou ferroviária é dispendioso ou carece de infraestrutura adequada;
- As polpas de minério, são na maioria classificadas como inertes e não perigosas pelos critérios da ABNT - Associação Brasileira de Normas Técnicas, elevando-se significativamente os índices de segurança operacional e ambiental (PORTAL METÁLICA, 2013).

Outra aplicação semelhante é o bombeamento de rejeitos com altas porcentagens de sólidos em massa (pasta mineral) para barragens, diminuindo a área necessária para disposição de rejeitos.

Os minerodutos mais comuns em operação transportam substâncias como fosfato, carvão, cobre, bauxita, caulim, concentrados de minério de ferro ou mesmos rejeitos do beneficiamento dos minérios (GEHO PUMPS, 2011).

Para se prever um transporte seguro da polpa por tubulações evitando-se altas pressões, revestimentos excessivos de tubulações, potência instalada de bombeamento elevada é importante o estudo das características reológicas da polpa

1

de modo a assegurar que o dimensionamento não seja superestimado e ocorra uma operação segura (CHAVES, 2002).

A reologia estuda a maneira como os fluidos se comportam quando se aplica uma tensão. Os fluidos podem ser classificados em newtonianos e não-newtonianos. Além desta classificação, os fluidos não-newtonianos podem ser classificados em: dilatante, pseudoplástico, pseudoplástico com "yield stress" e plástico de Bingham.

Na caracterização microscópica da reologia de uma polpa Pawlik & Laskowski (1999) consideram importantes o balanço de três forças agindo no sistema água-partícula: difusão browniana; interação hidrodinâmica; e as forças entre partículas. A contribuição específica de cada uma dessas forças depende do tamanho e da forma das partículas, da percentagem de sólidos e das condições físico-químicas da polpa.

Quando se trata de transporte de polpa a longa distância, um dos problemas mais sérios que deve ser evitado é a dificuldade de reinício de operação devido à obstrução da linha pelo próprio material e/ou compactação do material sedimentado podendo impedir a repolpagem. As principais condições de operação que determinam a ocorrência de obstrução são: velocidade de bombeamento, distribuição granulométrica da polpa, concentração de sólidos, pH e formato de partículas.

Conforme apresentado na Figura 1.1, há uma extensa malha de mineroduto operando no mundo, transportando diferentes minérios. Como exemplo pode-se citar o mineroduto de Da Hong Shan, situado na China, transportando minério de ferro, o mineroduto de Los Pelambres, localizado no Chile, que transporta concentrado de cobre e o mineroduto Simplot (USA) que escoa fosfato (GEHO PUMPS, 2011).

Com uma malha de 2.000 km em operação, o Brasil transporta cerca de 75 milhões de toneladas de minério por ano através de minerodutos. Os principais minerodutos brasileiros são: o sistema Samarco (paralisado no momento) habilitado a transportar minério de ferro por uma distância de 398 km; o mineroduto da MPSA-Mineração Paragominas S/A, escoando bauxita a uma distância de 244 km e o sistema Minas-Rio da Anglo American, com um comprimento total de 530 km, transportando minério de ferro numa concentração de 68% de sólidos em peso a uma vazão de bombeamento de 1.826 m³/hora (PORTAL METÁLICA, 2013; ABM, 2017).

2

Figura 1.1 – Malha de minerodutos no mundo Fonte: GEHO PUMPS (2011) (adaptado pelo autor).

1.2 JUSTIFICATIVA E MOTIVAÇÃO

Uma compreensão básica dos fenômenos de transporte envolvidos é de extrema importância para o projeto e controle do sistema de bombeamento, onde nos estudos relacionados aos fluxos de mistura sólido-liquido as seguintes abordagens são encontradas:

1) Abordagem reológica: surgiu em meados dos anos cinquenta, sendo aplicável a partículas não-coloidais ultrafinas, de características reológicas significativas;

2) Abordagem de modelagem de fluxo multifásico: são necessárias informações básicas sobre os efeitos da partícula sobre a estrutura do fluxo, as interações partícula-partícula e as interações de partículas-fluido e outros efeitos, sendo o que esta abordagem geralmente requer um esforço computacional substancial;

3) Abordagem empírica: recebeu maiores atenções devido à complexidade dos fluxos de transporte, sendo que a previsão da perda de carga e a delimitação de regimes de fluxo constituem os dois elementos principais dos estudos práticos.

Encontra-se na bibliografia uma considerável quantidade de modelos empíricos para transporte hidráulico de sólidos, mesmo assim, também podem ser encontrados defensores, corretores e até mesmo opositores de alguns modelos. Entretanto, os resultados experimentais são uma ótima ferramenta de projeto a nível industrial. Os resultados centram-se na análise de três parâmetros mais importantes no transporte hidráulico do ponto de vista industrial:

- Velocidade limite de deposição (VL);

- Perda de carga em misturas sólido-líquidas;

- Taxas de desgaste.

A velocidade limite de deposição (VL) como seu nome indica, é a velocidade mínima de fluxo para que não exista risco de depósito e de entupimento da tubulação. A definição mais utilizada e de fácil determinação experimental é aquela que identifica em qual velocidade os sólidos grossos permanecem parados por maiores períodos de tempo no fundo da tubulação (formação de dunas móveis e/ou leitos fixos no fundo).

A velocidade limite em transporte hidráulico de sólidos depende fundamentalmente das seguintes variáveis: granulometria das partículas sólidas; densidade relativa das partículas sólidas; diâmetro da tubulação ou altura de escorrimento em um canal; concentração de sólidos na mistura; inclinação da tubulação ou inclinação do canal; fator de forma das partículas sólidas e temperatura da mistura.

O regime de fluxo de uma polpa mineral é função das propriedades do fluido de transporte e das particulas sólidas; afeta a dependência da perda de carga sobre a vazão, bem como a magnitude da perda de carga. Também influencia a erosão do tubo e outras caracteristicas de desempenho (JACOBS, 1991).

O fluxo de mistura sólido-líquido por tubulações depende de uma grande quantidade de variáveis e parâmetros, não estando ainda avaliada com exatidão a influência de algumas delas. Estas variáveis podem ser sintetizadas da seguinte forma:

a) dependentes do sólido a transportar: granulometria; densidade; forma; dureza;

- b) dependentes do fluido transportador: densidade; viscosidade;
- c) dependentes da instalação: diâmetro interno da tubulação; comprimento; desnível;
 rugosidade interna; ângulos de inclinação da tubulação; singularidades
 (estreitamentos, curvas, válvulas, registros e outros);
- d) dependentes da mistura: concentração de sólidos em volume e peso; densidade da mistura;
- e) dependentes do sistema: toneladas de sólido a transportar; velocidade de fluxo; perda de carga.

Como motivação deste trabalho busca-se:

- A compreensão básica dos fenômenos de transporte envolvidos no bombeamento de frações granulométricas variando as concentrações de sólidos, de modo a medir as suas inter-relações e similaridades via ensaios de reologia, permeametria e bombeamento;
- A comprovação da importância das seguintes propriedades: tamanho, distribuição de tamanhos, forma e rugosidade das partículas, porcentagem de sólidos e condições físico-químicas da polpa.

Adicionalmente, com os resultados apresentados e discutidos neste trabalho, procura-se avaliar as variáveis envolvidas no movimento das frações de polpas de bauxita estudadas através de uma tubulação, verificando a sua conformidade a comprovação de GRAF et al. (1970) e também a forma funcional da perda de carga em bombeamento por tubulações.

1.3 OBJETIVOS

Objetivo Geral

Avaliar a influência da granulometria, concentração de sólidos e composição mineralógica nas propriedades reológicas e variáveis de transporte de polpa de bauxita por mineroduto.

Objetivos Específicos

- Determinação experimental de modelos reológicos de frações de polpas de bauxita, de granulometrias diferentes e concentrações mássicas pré-determinadas, visando a obtenção de parâmetros como a viscosidade e a tensão de cisalhamento;
- Determinação de fatores de atrito, via ensaios piloto, nos regimes laminar e turbulento e a correspondente comparação a modelos da bibliografia, via correlações semi-empíricas;
- Verificação das variáveis envolvidas no movimento das frações de polpa de bauxita quanto à comprovação de GRAF et al. (1970) e à forma funcional da perda de carga em bombeamento por tubulações.

1.4 ORGANIZAÇÃO DO TRABALHO

O Capítulo 1 consiste na parte introdutória do trabalho, objetivos, justificativa do tema e a apresentação da estrutura do trabalho.

No Capítulo 2 é realizada uma pesquisa bibliográfica onde são apresentados os conceitos sob os quais estão alicerçados os conhecimentos ligados ao estudo em questão e também a sua análise de forma a adquirir um conhecimento geral sobre o tema.

No Capítulo 3 são apresentadas a caracterização dos materiais e as metodologias dos ensaios experimentais e de interpretação e resolução dos equacionamentos envolvidos, além de uma abordagem de suporte acadêmico aos trabalhos desenvolvidos.

No Capítulo 4 são apresentados os resultados e discussão dos ensaios experimentais realizados, ensaios e estudos acadêmicos desenvolvidos como suporte aos trabalhos conforme mencionado.

As seguintes atividades foram realizadas na condução deste trabalho:

- 1º) Amostragens das polpas na unidade de beneficiamento, preparação das amostras e ensaios granuloquímicos no laboratório Físico-Químico da MPSA;
- 2º) Ensaios de caracterização em MEV Microscópio Eletrônico de Varredura no Laboratório da CPRM – Belém – PA;
- 3º) Ensaios de loop de bombeamento, picnometria e permeametria, realizados no Laboratório de Fenômenos de Transporte e Química de Interfaces Aplicados à Engenharia Mineral (LFQI), pertencente ao Departamento de Engenharia de Minas e de Petróleo (PMI) da Escola Politécnica da Universidade de São Paulo (EPUSP);
- 4º) Ensaios de análise granulométrica em MALVERN, realizados no Laboratório de Caracterização Tecnológica (LCT), pertencente ao Departamento de Engenharia de Minas e de Petróleo da Escola Politécnica da Universidade de São Paulo (EPUSP);
- 5°) Ensaios em Espectrometria de Raios-X, realizados no laboratório Físico-Químico da MPSA;
- 6º) Ensaios de reologia, em viscosímetro da marca HAAKE, modelo VT 550, realizados no laboratório Físico-Químico da MPSA;
- 7º) Caracterização reológica e determinação de fatores de atrito, fazendo-se comparações com bibliografias adequadas as condições do trabalho.

No Capítulo 5 encontra-se a finalização dos estudos, com uma síntese das conclusões retiradas ao longo do trabalho e algumas propostas para o desenvolvimento de estudos futuros.

No final do texto são apresentadas as referências bibliográficas que embasaram e serviram como suporte ao desenvolvimento dos trabalhos e também uma série de planilhas apêndice referentes aos resultados dos ensaios experimentais e memórias dos trabalhos desenvolvidos.

CAPÍTULO 2

REVISÃO DA LITERATURA

2.1 INTRODUÇÃO

Este capitulo aborda as principais propriedades das partículas e polpas minerais, relacionadas aos fundamentos da reologia relevantes ao transporte por tubulações, incluindo a classificação, medidas e interpretação das variáveis que integram direta ou indiretamente os vários modelos matemáticos reportados pela literatura os quais relacionam perda de carga na tubulação e/ou velocidade de deposição com variáveis fundamentais, como tamanho, forma e densidade das partículas minerais.

2.2 CARACTERIZAÇÃO DA FORMA E TAMANHO DE PARTÍCULAS MINERAIS

O desempenho de equipamentos de processamento de recursos minerais depende da natureza de partículas individuais que são processadas. O número de partículas envolvidas é muito grande e seria impossivel desenvolver procedimentos ou métodos para descrever detalhadamente o comportamento de cada partícula individual (WILLS, 2008).

Particulas diferem umas das outras em vários aspectos, sendo que as diferenças que as operações de processamento mineral exploram são as propriedades físicas que influenciam o comportamento da partícula quando sujeita a concentração no equipamento. As duas principais propriedades (ou caracteristicas) fundamentais são a granulometria (tamanho) e a composição mineralógica da partícula. Outras caracteristicas como formato, densidade, área superficial, susceptibilidade magnética, hidrofobicidade – e assim por diante – são também importantes e, em muitas operações de processamento mineral são as que dominam o comportamento do material.

De um modo geral as propriedades dos sistemas particulados são de duas categorias: as que dependem da natureza das partículas e as que se referem a todo o sistema (JONES, 1987). Entre as do primeiro tipo citam-se: forma, dureza, densidade, condutividade elétrica, susceptibilidade magnética, hidrofobicidade, cor, brilho, fluorescência, radioatividade, reatividade química e efeitos térmicos. Entre as

8

propriedades do sistema, citam-se: densidade aparente, área específica, ângulo de repouso, abrasividade, fragmentabilidade e concentrabilidade. No segundo caso a propriedade passa a ser uma característica do conjunto (ou da amostra) e não mais das partículas em si.

A descrição do tamanho de uma partícula irregular depende do método de medida adotado. Pode-se referir: a uma distância linear (diâmetro médio, mínimo ou máximo); a uma área (área total externa, área de uma seção da particula) ou a um volume. É desejável quantificar o tamanho de uma partícula em termos de uma qualidade única. A expressão mais comumente utilizada para este objetivo é o "diâmetro equivalente". Este termo refere-se ao diâmetro de uma partícula esférica que teria o mesmo comportamento da partícula em análise, quando submetida a uma determinada operação. Dependendo do método de medida adotado esses diâmetros podem variar dentro de limites amplos. Os métodos de medidas mais utilizados baseiam-se na similaridade geométrica (peneiramento) e similaridade hidrodinâmica (sedimentação e elutriação).

2.3 PRINCIPAIS MÉTODOS PARA A DETERMINAÇÃO DO TAMANHO DE PARTÍCULAS

A Tabela 2.1 apresenta os principais métodos utilizados na análise granulométrica e as correspondentes faixas de tamanho aplicáveis a cada um deles (VALADÃO, 2012).

Método	Faixa de aplicação (µm)
Peneiramento	100.000 - 37
Subpeneiramento	75 - 10
Microscopia Ótica	50 - 0,25
Centrifugação	40 - 5
Sedimentação (gravitacional)	40 - 1
Microscopia Eletrônica	1 - 0,005
Espalhamento laser	2000 - 0,1

Tabela 2.1 - Principais métodos utilizados para análise granulométrica.

Fonte: VALADÃO (2012).

Observa-se, neste caso, que os métodos aplicáveis a uma mesma faixa granulométrica não fornecem resultados idênticos.

Dos métodos acima relacionados o peneiramento é o mais utilizado em laboratório pela sua simplicidade, baixo custo e por aplicar-se a ampla faixa de tamanhos. Os gabaritos que aceitam ou rejeitam partículas de um certo diâmetro são peneiras com algumas características padronizadas, para que os resultados de classificação granulométrica em laboratório sejam comparáveis. Basicamente devem ser padronizados: a) Forma das aberturas – mundialmente se utiliza da abertura quadrada; b) Diâmetro dos fios – função da abertura; c) Função das malhas – fios de arame com abertura quadrada; d) Tamanho e formato das peneiras – normalmente redonda, presa a uma estrutura cilíndrica com diâmetro igual a 200 mm e altura igual a 50 mm; e) Aberturas disponíveis – seguem escalas padronizadas.

Existem vários sistemas de aberturas, tais como USBM, TYLER e ABNT. A escala TYLER é a mais utilizada, cuja abertura padrão é 74 µm, correspondendo a 200 malhas (mesh) por polegada linear na direção paralela a um dos fios da tela. O sistema é obtido pela multiplicação ou divisão da abertura-padrão pelo fator 2^{1/2}. Intercalações são obtidas usando o fator 2^{1/4}.

O sistema ABNT (Associação Brasileira de Normas Técnicas) baseia-se na abertura-padrão de 75 µm, que corresponde a 200 malhas e a escala utiliza o fator 2^{1/4}.

Além da padronização dos gabaritos para obtenção de análises granulométricas comparáveis, é necessária também a padronização da forma de execução dos ensaios, embora existam padronizações para fins específicos e não gerais.

Para análises de tamanhos abaixo de 37 µm (faixa do sub-peneiramento) existem vários métodos. Entretanto os mais utilizados são os que envolvem a sedimentação. Os equipamentos que utilizam a sedimentação podem ser simples como a pipeta de Andreasen ou dotados de dispositivos de raios-x ou campo centrífugo que permitem uma maior velocidade na obtenção de resultados (CHAVES, 2012).

Como método alternativo e mais amplamente empregado para o subpeneiramento, existe o ciclopeneirador (cyclosizer); equipamento que é um elutriador

10
e utiliza o mesmo princípio da ciclonagem, classificando as partículas com base na sua resistência a uma movimentação imposta a um fluido, resistência essa devido à ação da gravidade. Portanto, o sistema é classificado em frações nas quais as partículas têm velocidade de queda dentro de determinado intervalo, considerandose todas as partículas com a mesma densidade (CHAVES, 2012).

Nas últimas décadas, instrumentos baseados na difração (mais adequadamente chamado de espalhamento de luz laser por partículas finas) têm se tornado disponíveis, incluindo o Malvern MasterSizer[®]. O seu princípio de funcionamento baseia-se na passagem da luz laser através de uma suspensão diluída das partículas que circulam através de uma célula ótica. A luz é espalhada pelas partículas, sendo detectada por um detector em estado sólido que mede a intensidade da luz ao longo de um intervalo de ângulos. Uma teoria de espalhamento de luz é usada para calcular a distribuição de tamanhos de partículas a partir do padrão de distribuição de luz, de maneira que partículas mais finas induzem mais espalhamento que as grossas (LUZ et al., 2010).

Equipamentos de espalhamento de laser permitem realizar medidas de forma mais rápida (apenas alguns minutos), sendo fáceis de utilizar e oferecendo resultados muito reprodutíveis. A teoria de espalhamento de luz não oferece uma definição de tamanho que seja compatível com outros métodos, como o peneiramento. Na maior parte das operações de processamento mineral, por exemplo, distribuições de tamanhos de partículas obtidas por espalhamento laser tendem a parecer mais grossas que aquelas obtidas por outros métodos, incluindo o peneiramento.

Para análises de rotina com alta frequência em um dado meio, no qual se desejam detectar apenas mudanças na distribuição de tamanho de partículas, esses equipamentos são imbatíveis. Para comparações entre diferentes meios ou materiais, ou a resultados de análise obtidos com o auxílio de diferentes métodos, extremo cuidado deve ser usado na interpretação dos resultados. Além disso, esses instrumentos – evidentemente – não permitem o fracionamento da amostra para análises posteriores.

A distribuição granulométrica pode ser apresentada sob a forma de tabelas e gráficos. As tabelas são construídas pelos tamanhos, a frequência de partículas

naquele intervalo (% simples) e a frequência acumulada (% acumuladas passantes ou retidas) (LUZ et al., 2010).

O significado de uma distribuição é, entretanto, mais facilmente visualizado através de gráficos. Estes gráficos são, ainda, de maior interesse prático quando produzem uma reta, o que pode ocorrer quando as distribuições seguem uma determinada equação matemática. As equações de distribuição mais conhecidas são a normal, log-normal, GGS - Gates-Gaudin-Schuhmann e a RRB -Rosin-Rammler-Bennet (LUZ et al., 2010).

2.4 FORMA DAS PARTÍCULAS

O fator forma das particulas é importante em uma série de situações, pois afeta diretamente propriedades como área superficial, densidade de suspensões, principalmente para concentrações volumétricas acima de 30%, velocidade terminal de sedimentação e coeficiente de arraste, além de influenciar o desempenho de operações unitárias, como escoamento em tubos, tanques com agitação, células de flotação e leitos porosos (KELLY e SPOTTSWOOD, 1982; SOUZA PINTO et al., 2009).

Embora definições puramente qualitativas (como isométrica, placóide, tabular, agulhas e outras) sejam úteis em algumas aplicações, é fundamental que a forma da particula seja descrita quantitativamente, a fim de permitir a análise do seu efeito no comportamento da particula em processos de escoamento citados acima. Diversas maneiras têm sido usadas na descrição quantitativa da forma da particula (KELLY e SPOTTSWOOD, 1982; ALLEN, 1997), sendo que o mais comum é o uso de fatores de forma. Os mais frequentemente utilizados são os fatores de forma volumétrica, o superficial e o cinemático.

O fator de forma volumétrico é dado por

$$\beta = \frac{m_{\rho}}{\rho_s d_p^3} \tag{2.1}$$

sendo $\mathbf{m}_{\mathbf{p}}$ a massa média de partículas em um intervalo estreito de tamanhos $\mathbf{d}_{\mathbf{p}} \in \mathbf{p}_{\mathbf{s}}$ a densidade dos sólidos. No caso de partículas esféricas, $\beta = \pi/6 = 0,524$; para partículas cúbicas $\beta = 0,7$; e para partículas com formato tabular ou acicular, o fator de forma volumétrico é normalmente menor que 0,5. O fator de forma superficial ψ (também chamado de esfericidade) é dado por

$$\psi = \frac{\pi d_s^2}{A_p} = \left(\frac{d_v}{d_s}\right)^2 \tag{2.2}$$

Ele requer a medida da área superficial da partícula (mais frequentemente de um número de partículas de tamanho representativo d_p), que pode ser realizada por meio da técnica de permeametria ou de adsorção gasosoa pelo método BET (ALLEN, 1997).

Particulas esféricas apresentam o valor unitário, enquanto que as arredondadas apresentam valores de ψ em torno de 0,8. O fator de forma superficial de particulas irregulares, produzidas por moagem, varia normalmente entre 0,5 e 0,7 (KELLY e SPOTTSWOOD, 1982).

Ainda uma outra definição é a do fator de forma cinemático $\boldsymbol{\zeta}$, dado pela razão entre as velocidades terminais de sedimentação da partícula irregular e de uma partícula esférica,

$$\zeta = \frac{v_{\infty,irreg.}}{v_{\infty,esf.}}$$
(2.3)

Sendo $v_{\infty,irreg.}$ e $v_{\infty,esf.}$ as velocidades terminais de sedimentação das partículas de formato irregular e esférico, respectivamente, de mesmo tamanho d_p (SAMPAIO e TAVARES, 2005).

2.5 DETERMINAÇÃO DA ESFERICIDADE DE PARTÍCULAS ATRAVÉS DA PERMEAMETRIA

Segundo HEYWOOD (1954) a área superficial é uma das propriedades mais importantes de materiais particulados, e há muitas técnicas para a sua medida direta.

SCHULTZ (1974) afirma que a resistência oferecida por um leito de partículas ao fluxo de um fluido é função da região da fronteira entre o fluxo e o leito estacionário de partículas. O modelo proposto por Kozeny-Carman, em 1952, expressa esta relação para a determinação da área superficial de materiais particulados.

Segundo MASSARANI (2002), a superficie especifica da matriz porosa (S_v) é função de um fator de forma **B**, associado à superficie, e um fator **C**, associado ao volume da partícula. Logo a área especifica da matriz porosa pode ser definida de acordo com a Equação (2.4).

$$S_V = \frac{6.(1-\varepsilon)}{D_p.\psi}$$
(2.4)

sendo:

 \mathcal{E} a porosidade do meio; Ψ a esfericidade da particula; D_p o diâmetro médio de Sauter (volume de superficie), m

A permeametria é uma técnica que permite a determinação da esfericidade de materiais particulados (MASSARANI, 2002; SCHULTZ, 1974; ERGUN, 1952) e pode ser determinada através da perda de carga do escoamento de um fluido através de um leito poroso, o qual tem sua constante de permeabilidade (k) determinada conforme a Equação (2.5) (McCABE et al., 2005), baseada na Lei de Darcy.

$$-\frac{\Delta P}{L} = \frac{\mu}{K} \cdot \frac{Q}{A}$$
(2.5)

sendo:

 ΔP a perda de carga através do meio poroso, Pa;

Q a vazão de ar, m³/s;

µ a viscosidade dinâmica do fluido a 20º C, Pa.s;

A a área da seção do leito, m²;

L o comprimento do leito, m;

K a constante de permeabilidade do leito, adimensional.

Segundo McCABE et al. (2005), a porosidade do meio (\mathcal{E}) pode ser definida como a razão entre o volume de espaços vazios pelo volume total do leito (vazio + sólidos). Assim se um leito de volume (V), for preenchido por certa massa de partículas (m) apresentando massa especifica ρ_s , a porosidade do meio pode ser definida segundo a Equação (2.6).

$$m_s = (1 - \varepsilon) \cdot \rho_s \cdot V$$

sendo:

m_s a massa total de sólidos, kg;

ε a porosidade do meio, adimensional;

V o volume total de sólidos, m³.

Com as caracteristicas do sistema, tais como, porosidade, diâmetro da partícula, perda de carga por altura de leito e a velocidade média do fluido, o modelo de Kozeny-Carman apresenta a esfericidade de acordo com a Equação (2.7). ERGUN (1952) também discute e apresenta tal modelo (McCABE et al., 2005).

$$-\frac{\Delta P}{L} \cdot \frac{(D_p \cdot \psi)^2}{\overline{V}_0 \cdot \mu} \cdot \frac{\varepsilon^3}{(1-\varepsilon)^2} = 150$$
(2.7)

sendo:

D_p o diâmetro médio de Sauter, m;

V₀ a velocidade média do fluido, m/s.

Rearranjando a Equação (2.7), combinada com a Equação (2.5), tem-se o modelo apresentado através da Equação (2.8) (McCABE et al., 2005; SOUZA PINTO et al., 2009).

$$K = \frac{(D_p \cdot \psi)^2 \cdot \varepsilon^3}{150 \cdot (1 - \varepsilon)^2}$$
(2.8)

2.6 FLUIDINÂMICA DE PARTÍCULAS SÓLIDAS

Na interação hidrodinâmica de um sistema água-particula, o movimento de uma particula na água é o resultado de um conjunto de forças que agem em diferentes sentidos tais como: força externa aplicada, força peso, empuxo e a força de resistência oferecida pelo fluido à particula em movimento. Esta última força depende principalmente: da velocidade da particula; da sua forma; da quantidade de turbulência no seio do fluido; e da interação com outras particulas adjacentes ou com as paredes do equipamento que as contém. O número de Reynolds é o parâmetro empregado para caracterizar a turbulência a que uma particula em movimento está submetida em um fluido, sendo dado por:

$$Re_p = \frac{\rho_L V d_i}{\mu} \tag{2.9}$$

sendo:

 ρ_L a densidade ou peso especificao do fluido, kg/m³;

V a velocidade relativa partícula-fluido, m/s;

di o diâmetro da partícula, m;

µ a viscosidade absoluta ou dinâmica do fluido, kg/m.s.

Os diferentes tipos de regimes de uma partícula caracterizados pelo número de Reynolds são laminar, turbulento e intermediário.

Não há limites bem definidos para números de Reynolds na caracterização dos tipos de regime. Para partículas esféricas, o regime laminar (Lei de Stokes) pode ser verificado para $Re_p < 0,1$, podendo chegar até 2 sob condições controladas: o regime turbulento (Lei de Newton) estaria compreendido na faixa de valores de 500 a 1.000 < $Re_p < 150.000$ e o regime intermediário, de 0,1 a 2 < Rep < 500 a 1.000 (MASSARANI, 2002).

Para partículas irregulares é necessário realizar uma correção no número de Reynolds mediante o cálculo do fator de esfericidade da partícula (ψ), podendo ser calculado pela Equação (2.10).

$$\psi = \left(\frac{d_v}{d_s}\right)^2 \tag{2.10}$$

sendo:

- d_v o diâmetro volumétrico, ou seja, o diâmetro de uma esfera que tenha o mesmo volume da partícula;
- d₅ o diâmetro de área, ou seja, o diâmetro de uma esfera que tenha a mesma área da partícula.

Considerando uma partícula esférica em queda livre, grande parte dos mecanismos que a governam podem ser descritos pelas Leis de Newton e de Stokes.

Newton concluiu que a força de resistência exercida pelo fluido ao movimento de uma particula varia com o quadrado da sua velocidade. Essa teoria não é completa, uma vez que leva em consideração apenas o aspecto dinâmico da força de resistência do fluido à partícula, não considerando os aspectos de turbulência e da viscosidade. Deste modo, visando uma concordância entre a Lei de Newton e os dados experimentais, foi inserido um coeficiente de correção da equação, denominado de coeficiente de resistência ou arraste, C_d, de modo a determinar a força de resistência, F_d.

Assim, a equação geral da força de resistência, F_d, é dada por:

$$F_d = \frac{1}{2} C_d A \rho_L V^2 \tag{2.11}$$

sendo:

F_d, a força de resistência ou arraste, kgm/s²;

Cd, o coeficiente de resistência ou de arraste, função da forma da partícula e do tipo de regime do fluxo (adimensional);

A, a área projetada da partícula, normal ao seu movimento, m².

A força de resistência ao movimento é constituida por duas componentes: a resistência de forma que é uma força do tipo inercial e a resistência de fricção, do tipo viscoso (SAMPAIO e TAVARES, 2005).

A resistência de forma tem origem na assimetria da distribuição de pressão do fluido sobre a partícula nas suas duas faces opostas, criando uma componente na direção do fluxo, com sentido contrário ao movimento da partícula.

A resistência de fricção é consequência da viscosidade do fluido. No deslocamento (movimento relativo) entre a partícula e o fluido é gerada uma força de cisalhamento na superficie da partícula, resultando também numa componente na direção do fluxo, com sentido contrário ao movimento desta.

O balanço de forças hidrodinâmicas, que ocorrem na interface partículasfluido, conforme ilustrado na Figura 2.1, apresenta uma resultante na direção do movimento, em sentido contrário, conhecida como força de arraste ou resistiva (F_D) e outra perpendicular à direção do movimento, de sustentação (F_L), que para particulas esféricas apresenta o valor nulo.

Figura 2.1 - Componentes da força de resistência fluidodinâmica e de sustentação sobre uma particula (SAMPAIO e TAVARES, 2005).

No regime turbulento, a viscosidade não apresenta um papel importante na magnitude da força de resistência, predominando portanto a componente de resistência de forma. Por outro lado, no regime laminar a força de resistência passa a ser influenciada pela viscosidade do fluido e neste caso, predomina a componente de resistência de fricção (SAMPAIO e TAVARES, 2005).

No regime intermediário, à medida que aumenta o número de Reynolds da partícula, começa a diminuir gradativamente a participação da resistência de fricção e a aumentar a da resistência de forma.

Na sedimentação, o balanço das forças atuantes na particula envolverá a força peso no sentido da sedimentação e no sentido contrário, o empuxo e a força de arraste.

Quando a força de resistência ao movimento de sedimentação de uma partícula adquire um valor igual e de sentido oposto à resultante de todas as forças atuantes na mesma, sua aceleração será nula (dv/dt = 0) e conferirá à partícula uma velocidade constante denominada velocidade terminal de queda ou sedimentação. Para uma particula esférica com diâmetro d_i e volume $\pi d_i^3/6$, a sua velocidade

terminal, V_s, será dada pela equação baseada na Lei de Newton:

$$V_{S} = \sqrt{\frac{4d_{i}(\rho_{S} - \rho_{L})g}{3C_{d}\rho_{L}}}$$
(2.12)

sendo:

 V_s a velocidade terminal de sedimentação, m/s; ρ_s a massa específica da particula, kg/m³; ρ_L a massa específica do fluido, kg/m³; g a aceleração da gravidade, m/s²;

C_d o coeficiente de arraste, adimensional.

Para a solução desta equação, torna-se necessário determinar o coeficiente de resistência, C_d, que está relacionado com o número de Reynolds da partícula, Re_p.

De acordo com NAPIER-MUNN (1990) e PLITT (1991) apud LUZ et al. (2010), nos casos de números de Reynolds da particula maiores que 1.000, regime turbulento, **C**_d, é praticamente independente do número de Reynolds da particula e sendo somente uma função da forma da partícula, com valores em torno de 0,44.

A sedimentação muito lenta ou sob o regime laminar de uma partícula esférica é muito bem expressa pela Lei de Stokes.

Há uma relação linear entre C_d e Re_p, em que:

$$C_d = \frac{24}{Re_p} \tag{2.13}$$

e a força de resistência é dada pela Equação (2.14).

$$F_d = 3\pi d_i \mu V \tag{2.14}$$

Deste modo, a velocidade terminal (queda ou sedimentação) calculada pela Lei de Stokes é dada por:

$$V_{s} = \frac{d_{l}^{2}(\rho_{s} - \rho_{L}).g}{18\mu}$$
(2.15)

Para a região de regime intermediário, envolvendo o número de Reynolds da particula situados entre 0,2 e 1.000, MASLIYAH (1979 apud PLITT, 1991) propôs a seguinte equação para a velocidade teminal:

$$V_{s} = \frac{d_{i}^{2}(\rho_{s} - \rho_{L}).g}{18\mu(1 + 0.15Re_{p}^{0.687})}$$
(2.16)

De acordo com BIRD *et al.* (1960) pode-se tornar o valor aproximado de C_d no regime intermediário ($2 < \text{Re}_p < 500$) como sendo igual a:

$$C_d = \frac{18,5}{Re_p^{0,6}}$$
(2.17)

Os estudos envolvendo sedimentação em queda livre retratam uma situação teórica, semelhante a polpas com baixas percentagens de sólidos (menores que 3% em volume). A realidade em Tratamento de Minérios envolve o movimento de partículas em uma polpa de minérios onde à medida que aumenta a quantidade de sólidos, aumentam as colisões entre elas e as suas trajetórias ficam influenciadas pelo movimento das demais e pelo deslocamento desordenado da água através dos canais gerados entre as partículas. Tem-se como resultado, uma velocidade terminal de uma dada partícula menor do que aquela observada em queda livre (SAMPAIO e TAVARES, 2005).

As velocidades terminais de particulas numa sedimentação em queda retardada para regimes turbulento e laminar podem ser calculadas, aproximadamente, pelas Leis de Newton e de Stok es,Equações (2.18) e (2.19) modificadas, respectivamente,

$$V_{s} = \sqrt{\frac{4d(\rho_{s} - \rho_{p}).g}{3C_{d}.\rho_{p}}}$$
(2.18)

$$V_s = \frac{d^2(\rho_s - \rho_p).g}{18\mu}$$
(2.19)

onde ρ_s é a massa específica dos sólidos.

De acordo com REYNOLDS e JONES (1989), a velocidade terminal de sedimentação de partículas irregulares em um fluido não-Newtoniano tem um valor aproximado daquela obtida para partículas esféricas com volume e densidade equivalentes.

2.6.1 Interação entre partículas

O papel das forças (interação) entre partículas em um meio aquoso pode ser explicado pelas teorias DLVO clássica (de autoria dos cientistas Derjaguin e Landau (russos) e Verwey e Overbeek (holandeses)), apresentada na década de 40 e X- DLVO (devido a forças estruturais) que é a teoria DLVO estendida, sendo esta, mais recente (LINS e ADAMIAN, 2000).

Pela teoria DLVO a energia de interação pode provocar dispersão ou agregação de partículas e tem por origem as forças de van der Waals e aquelas entre as duplas camadas elétricas.

As forças estruturais podem ser repulsivas de hidratação ou atrativas hidrofóbicas. As primeiras são resultantes de mudanças na estrutura da água causadas pela indução de superficies hidrofílicas hidratadas ou por íons hidratados próximos à superficie das partículas. As segundas devem-se à repulsão das partículas à água, promovendo a sua agregação (LINS e ADAMIAN, 2000).

2.6.2 Difusão Browniana

A difusão browniana está relacionada com a tendência apresentada pelas partículas em migrar de uma região mais concentrada para uma outra, de baixa concentração, sendo uma consequência direta do movimento browniano, com trajetórias irregulares, em ziguezague, devido a colisões ao acaso com as moléculas do meio de suspensão, com outras partículas ou com as paredes do equipamento. Quanto menores as partículas, mais nítido será o movimento browniano (LINS e ADAMIAN, 2000).

2.7 REOLOGIA

2.7.1 Viscosimetria

Define-se reologia (MACHADO, 2002) como sendo a ciência que estuda a deformação e o escoamento de materiais submetidos a tensões, sob determinadas condições termodinâmicas ao longo de um intervalo de tempo, incluindo propriedades tais como: elasticidade, viscosidade e plasticidade.

A viscosidade de um fluido, polpa no caso do Tratamento de Minérios, é definida como sendo a propriedade que o mesmo apresenta em oferecer uma maior ou menor resistência à deformação, quando sujeita a esforços de escorregamento. O termo viscosidade pode ser entendido como "o atrito interno de um fluido" causado pela atração molecular, o qual provoca uma resistência ao escoamento (BARBATO, 2009).

A viscosimetria é um segmento da Mecânica dos Fluidos que consiste na prática experimental de medir a resposta reológica dos fluidos, considerados puramente viscosos, onde a componente elástica possa ser desprezada. Consiste portanto na medida de grandezas físicas, tais como velocidade angular, torque, ângulo de deflexão, tempo, etc. O objetivo é que estas grandezas possam ser transformadas em unidades de tensão e de taxa de cisalhamento. A partir daí chega-se a viscosidade, através de equações deduzidas a partir de princípios e leis da mecânica clássica (MACHADO, 2002; NASCIMENTO, 2008).

2.7.2 Modelos Reológicos

2.7.2.1 Fluidos Inelásticos

A maioria dos fluidos com aplicação na indústria apresenta comportamento de fluidos independentes do tempo ou puramente viscosos. O modelo mais simples é do fluido newtoniano em que a tensão de cisalhamento (τ) é diretamente proporcional à taxa de deformação ($\dot{\gamma}$). A constante de proporcionalidade (μ) é a viscosidade dinâmica do fluido. A sua equação constitutiva é representada por:

$$\tau = \mu . \dot{\gamma} \tag{2.20}$$

Este tipo de comportamento é observado com o ar, água, alguns tipos de óleos, alcoóis, dentre outros.

Os demais modelos, com uma certa complexidade, representam os fluidos não-newtonianos onde a tensão de cisalhamento não é diretamente proporcional à taxa de deformação. A sua equação constitutiva é representada por:

$$\tau = \mu_a . \dot{\gamma} ; \tag{2.21}$$

em que μ_a é a sua viscosidade aparente (BIRD, 1960).

A natureza desta relação é o critério utilizado para a classificação dos diversos tipos de fluidos.

Existe um grande número de fluidos não-newtonianos com bastante relevância. Podemos citar, por exemplo, os fluidos de comportamento da lei de

potência (Power-Law), para uma ampla faixa de taxas de cisalhamento, destacandose as dispersões de polímeros e emulsões (MACHADO, 2002; ROCHA, 2010; BARNES, 1977).

O modelo "power-law" (Ostwald, 1925) é representado pela equação

$$\tau = K \dot{\gamma}^n \tag{2.22}$$

Sendo que **K** e **n** são parâmetros do fluido, denominados índice de consistência e índice de comportamento de fluxo, respectivamente.

No caso de fluidos não-newtonianos, com presença de tensão limite de escoamento (τ_c), os principais modelos são da forma:

$$\tau = \tau_c + f\left(\dot{\gamma}\right) \tag{2.23}$$

Alguns exemplos importantes são:

$$\tau = \tau_c + \eta_B \dot{\gamma} \qquad (Bingham \, e \, Green - 1920)$$

$$\tau = \tau_c + K \dot{\gamma}^n \qquad (Herschel - Bulkley - 1926)$$

$$\sqrt{\tau} = \sqrt{\tau_c} + \sqrt{K} \dot{\gamma} \qquad (Casson - 1959)$$
(2.24)

Em cada caso, os parâmetros τ_c , *n*, η_B *e K* são diferentes e devem ser determinados experimentalmente. Esses modelos são aplicáveis a fluidos como lamas hiperconcentradas, polpas de minério, concretos frescos e tintas. Estes fluidos necessitam de uma tensão finita, conhecida como tensão limite de escoamento, para que ocorra o movimento das partículas (BAILEY, 1998).

Esse comportamento é característico de suspensões pseudo-homogêneas de partículas finas ou ultrafinas. Segundo Nguyen e Boger (1992), o valor da tensão limite de escoamento denota a transição entre o comportamento de um sólido e um líquido.

Uma das principais aplicações desse parâmetro tem sido no projeto e monitoramento do transporte de suspensões através de bombeamento, onde se deseja um valor da tensão de escoamento que possibilite o transporte de suspensões sem a ocorrência de sedimentação de partículas.

As Figuras 2.2 e 2.3 e Tabela 2.2 apresentam as curvas de fluxo (reogramas) e os principais modelos encontrados na literatura (MACHADO, 2002; MAXEY, 2007).

Figura 2.2 – Reogramas de diferentes tipos de fluidos. Fonte: MACHADO (2002).

Figura 2.3 – Principais modelos encontrados na literatura. Fonte: MAXEY (2007).

Tabela 2.2 – Equações,	parâmetros	reológicos e	e exemplos	de fluidos
não-Newtonianos.				

Modelo	Equação	nde*	Parâmetros	Exemplos
Bingham	$ au=\mu_p$ ɣ + $ au_L$	2	Viscosidade plástica (μ_p) e limite de escoamento (τ_L)	Dispersões coloidais concentradas
Ostwald	$ au = K y^n$	2	Índice de consistência (K) e índice de fluxo (n)	Dispersões de polímeros e/ou argilas
Herschell- Bulkley	$\tau = K y^n + \tau_0$	3	Κ; n; τ ₀	Dispersões de polímeros e/ou argilas
Robertson- Stiff	$ au = a (\mathbf{y} + \mathbf{y}_0)^b$	3	a; b; ɣ ₀	Dispersões de polímeros e/ou argilas
Casson	$\tau^{1/2} = (\mu_{\infty} \gamma)^{1/2} + \tau_0^{1/2}$	2	μ_{∞} ; $ au_0$	Dispersões coloidais

nde* = número mínimo de determinações experimentais Fonte: MACHADO (2002). Para fluidos com comportamento reológico dependente do tempo é possível a observação do chamado fenômeno da histerese, conforme Figura 2.4, mostrando as curvas de fluxo (A) e de viscosidade (B), ascendentes (I) e descendentes (II) em relação a taxa de cisalhamento. Neste caso demonstra a tixotropia de um fluido nãonewtoniano pseudoplástico (SCHRAMM, 2006).

Este implica que a viscosidade dos sistemas sujeitos a uma força por um tempo **t** não é a mesma quando medida no mesmo tempo **t** depois de interrompida a perturbação (BARNES, 1977; ROCHA, 2010). Estes fluidos, constituídos por suspensões onde os seus componentes possuem uma elevada anisotropia, apresentam variação da viscosidade com o tempo quando são submetidas a taxas de cisalhamento constantes. Este fenômeno é conhecido como tixotropia, quando ocorrer queda da viscosidade com o tempo, ou reopexia, quando for observado o aumento da viscosidade com o tempo.

Figura 2.4 – Curvas de fluxo (A) e de viscosidade (B) – Exemplo de tixotropia

Existem casos em que a literatura usa erroneamente o termo "tixotrópico" no lugar de "pseudoplástico" (BARNES, 1977; ROCHA, 2010) na classificação dos materiais. A pseudoplasticidade e também a pseudoplasticidade com limite de escoamento é uma característica que significa a queda da viscosidade ("shear-thinning"), com o aumento da taxa de cisalhamento, mas sem ocorrer variação com o tempo.

2.7.2.2 Fluidos Viscoelásticos e Soluções Poliméricas

A grande maioria dos fluidos apresenta um comportamento reológico que os classifica entre os líquidos e sólidos: eles são chamados de viscoelásticos. Deste

modo, a viscosidade e a elasticidade são duas possibilidades de resposta à tensão a que são submetidos. O comportamento sólido (distensão) ou líquido (fluxo) vai depender das características relacionadas ao tempo natural de relaxação e ao tempo de duração do experimento (SCHRAMM, 2006).

2.7.3 Reologia das Polpas Minerais

De um modo geral, as propriedades reológicas mais importantes no processamento de suspensões minerais são a viscosidade e tensão limite de escoamento.

Estas propriedades têm impacto direto no projeto de equipamentos, na eficiência e no consumo energético de diversas operações industriais, tais como a moagem de minérios a úmido e o transporte de polpa por bombeamento.

A viscosidade pode sofrer variações devido a vários fatores, sendo que a mesma tende a diminuir com o aumento da temperatura e pode aumentar com o aumento de pressão, mas pode ser desprezível para alterações pequenas de temperatura e pressão (NASCIMENTO, 2008).

O tempo de cisalhamento também pode influir para caso de o material ser tixotrópico ou reopético.

No caso das suspensões, a viscosidade é sensível à variação da concentração, ao tamanho e distribuição de tamanhos das partículas, à forma das partículas e a qualquer outro fator que modifique o nível de agregação das partículas, tais como a presença de sais, agentes dispersantes, agentes floculantes e mudança de pH.

HE et al. (2004) comentaram sobre os resultados de estudos de pesquisadores que estudaram a influência da distribuição de tamanhos de partículas na viscosidade em suspensões de carvão e dióxido de titânio, e verificaram que uma distribuição larga no tamanho de partículas leva a uma queda da viscosidade e também da tensão no ponto de escoamento.

GARCIA et al. (2003) relataram que a viscosidade aumenta conforme o tamanho da partícula diminui e que a tensão limite de escoamento é proporcional ao número de contatos e à energia total entre as partículas. Também, estes pesquisadores constataram que numa dada concentração da fase dispersa, a

diminuição de tamanho da partícula resulta na redução da distância média de separação entre as partículas e, como consequência, num aumento das interações hidrodinâmicas e da viscosidade.

ZHONGWU et al. (2001), estudaram suspensões de óxidos metálicos e relataram que um dado sistema constituído por partículas tipo esferas sólidas apresenta viscosidade mínima se comparado com outros sistemas de mesma distribuição de tamanhos de partículas e fração volumétrica.

BHATTACHARYA (1998), comenta sobre as formas das partículas, relatando que existe um consenso geral de que a viscosidade aumenta conforme aumenta o desvio da esfericidade. No que diz respeito à quantificação da influência que o tamanho das partículas tem sobre a tensão de escoamento, este autor encontrou discrepâncias entre os outros pesquisadores.

Suspensões diluídas tendem a ter comportamento newtoniano e, na medida em que aumenta a concentração, o efeito das interações entre as partículas vai se tornando relevante nas propriedades reológicas, podendo ocasionar um comportamento não- newtoniano.

O perfil da curva de viscosidade pode variar de acordo com o tipo de agregado formado e o percentual de agregação. Quando a forma de atração entre as partículas proporciona o tipo de agregado face a face, este agregado pode se comportar como uma partícula com esfericidade e tamanho maiores e, assim, a viscosidade tende a diminuir com o aumento do número de agregados, desde que a concentração não seja muito alta.

À medida que a concentração aumenta, o número e tamanho dos agregados se eleva e começa a haver a oclusão da água presente na suspensão no interior desses "mega agregados".

Para um determinado tipo de agregados (face/extremidade, do tipo castelo de cartas) a viscosidade tende a se elevar devido ao aprisionamento da água no seu interior (NASCIMENTO, 2008).

SOFRÁ e BOGER (2002) estudaram as características reológicas da lama vermelha (resíduo do processo Bayer) visando otimizar as operações relativas ao depósito deste resíduo. Comparando a variação da tensão no ponto de escoamento

versus concentração do resíduo os autores observaram um aumento exponencial da curva de fluxo, verificando o valor da concentração a partir da qual a tensão no ponto de escoamento cresce muito rapidamente.

O efeito do cisalhamento prévio também foi avaliado por estes pesquisadores, sendo constatado o caráter tixotrópico da suspensão, ou seja, as suspensões cisalhadas por um período anterior as medidas reológicas apresentaram queda da viscosidade e da tensão limite de escoamento. Esta queda se acentuou conforme aumentou o tempo de pré-cisalhamento até que se obteve um valor de equilíbrio, em que o aumento do tempo não interfere mais nas propriedades.

Deste modo foi constatado o comportamento pseudoplástico da lama vermelha em diversas concentrações, sendo que a redução da viscosidade foi bem maior para as suspensões com alto teor de sólidos.

Em polpas minerais, de um modo geral, a interação da quantidade de finos e a percentagem de sólidos não pode ser desconsiderada, ou seja, o efeito da quantidade de finos na tensão de cisalhamento é muito pequeno para pequenas percentagens de sólidos (< 5 a 10 %).

De acordo com HE et al. (2004), polpas diluídas apresentam comportamento newtoniano (1% em volume) e, com o aumento da concentração de sólidos, o efeito aglomerativo se torna mais pronunciado, o que acarreta um acréscimo no valor da viscosidade, gerando um comportamento não-newtoniano para a maioria das polpas minerais (USUI *et al.*, 2001). Modelos empíricos que predizem a viscosidade de suspensões a partir de correlações com a viscosidade do liquido carreador são apresentados na Tabela 2.3.

De maneira a avaliar a utilidade e/ou aplicabilidade das equações apresentadas na Tabela 2.3, adota-se uma porcentagem de sólidos volumétrica de 20%, ou seja, $\phi = 0,2$. Para esta situação, os valores da viscosidade encontrados pelas expressões da mesma tabela indicam que a relação μ/μ_f converge para a faixa de 1,8 a 2,1. Isto significa que, em termos práticos, para uma porcentagem de sólidos volumétrica de 20%, a polpa mineral é duas vezes mais viscosa que a água.

Autor	Modelo
Roscoe (1954)	$\frac{\mu}{\mu_f} = \frac{1}{(1-\phi)^{2.5}}$
Krieger e Dougherty (1959)	$\frac{\mu}{\mu_f} = (1 - \frac{\phi}{\phi_m})^{\mu,\phi_m}$
Tomas (1965)	$\frac{\mu}{\mu_f} = 1 + 2,5\phi + 10,05\phi^2 + 0,00273e^{16.6\phi}$
Heiskanen e Laapas (1979)	$\frac{\mu}{\mu_f} = 1 + 2.5\phi + 14.1\phi^2 + 0.00273e^{16.6\phi}$
Shook e Roco (1991)	$\frac{\mu}{\mu_f} = 1 + 2.5\phi + 10\phi^2 + 0.0019e^{20\phi}$
Senepati et al. (2009)	$\frac{\mu}{\mu_f} = \frac{10C_u}{d_{50}} \left[1 + \frac{\mu}{\gamma^{0,4}} \cdot (\frac{\phi}{\phi_m - \phi}) \right]^{3.5}$

Tabela 2.3 – Correlações para viscosidade de polpas

Fonte: USUI et al. (2001)

sendo os seguintes parâmetros são aplicados aos modelos da Tabela 2.3:

- µ, a viscosidade da suspensão (polpa), Pa.s;
- µf, a viscosidade do liquido carreante, Pa.s;
- Φ, a concentração volumétrica dos sólidos na fase dispersa, em fração;

φm, a concentração volumétrica máxima de empacotamento dos sólidos, em fração;

Cu, o coeficiente de uniformidade, adimensional;

 d_{50} , a granulometria em que passa 50% da massa das partículas, μ m;

γ, a taxa de cisalhamento, s⁻¹.

2.8 TRANSPORTE HIDRÁULICO DE POLPAS MINERAIS

2.8.1 Descrição Geral do Processo

Para que o transporte de misturas sólido-liquidas através de tubulações seja técnicamente praticável, as seguintes condições devem ser cumpridas:

- O sólido deve misturar-se e separar-se facilmente;

 O sólido a ser transportado não deve reagir nem com o fluido carreador nem com a tubulação;

- Não devem haver riscos, como por exemplo, a obstrução da tubulação devido às interações entre particulas, trazendo como consequência aglomeração delas;
- O desgaste e ruptura a que se submetem as particulas durante o transporte não devem ter efeitos adversos para o processo delas;

- A quantidade do fluido carreador deve ser adequada.

Dependendo da topografia e especificamente do desnivel entre o ponto da alimentação e da descarga da tubulação, dois tipos de força impulsora podem ser utilizados para mover a mistura, com o qual o transporte hidráulico de sólidos pelas tubulações classifica-se em transporte gravitacional e transporte por bombeamento (CHAVES, 2002).

2.8.2 Bombas para Polpas Minerais

Existem dois tipos de bombas que podem ser utilizadas no transporte hidráulico: as bombas de deslocamento positivo, que podem ser bombas alternativas ou rotatórias, e as centrífugas.

As primeiras têm como característica a transferência direta da energia mecânica cedida pela fonte motora em energia potencial (energia de pressão). Esta transferência é obtida pela movimentação de um órgão mecânico da bomba, que obriga o fluido a executar o mesmo movimento do qual ele está animado.

O fluido, sucessivamente enche e depois é expulso dos espaços com volume determinado no interior da bomba. A Figura 2.5 mostra um exemplo da utilização desse tipo de bomba.

Estas bombas são empregadas para trabalhar com altas pressões. A descarga do fluido é pulsante. No seu movimento o êmbolo se afasta do cabeçote provocando a aspiração do fluido através de uma válvula de admissão. Na etapa de retorno o fluido é comprimido obrigando o fluido a sair pela válvula de descarga. Seu funcionamento é pulsante já que o fluido fica confinado no cilindro durante a aspiração. Estas bombas podem ter um ou vários cilindros. A pulsação diminui conforme aumenta o número de cilindros.

Figura 2.5 – Corte de uma bomba de deslocamento positivo Fonte: GEHO (2011).

As bombas centrífugas têm por princípio de funcionamento a transferência de energia mecânica para o fluido a ser bombeado em forma de energia cinética que por sua vez, é transformada em energia potencial (energia de pressão) sendo esta a sua característica principal. O movimento rotacional de um rotor inserido em uma carcaça (corpo da bomba) é o órgão funcional responsável por tal transformação. Na Figura 2.6 são descritos detalhes do projeto das bombas WEIR série AH, que são bombas com revestimentos internos para polpas abrasivas e corrosivas.

Diferentemente das bombas de deslocamento positivo estas não apresentam válvulas que permitam controlar o fluido na aspiração e na descarga. Podem trabalhar com líquidos muito viscosos e com sólidos em suspensão. Conseguem atingir pressões moderadas de até 50 mca. Podem transportar fluidos tais como graxas, óleos vegetais e minerais, melaço, tintas e vernizes, e outros.

Figura 2.6 – Bomba centrifuga para polpa abrasiva, série AH Fonte: WEIR (2006).

2.8.3 – Variáveis do Sistema

O fluxo de mistura sólido-liquido por tubulações depende de uma grande quantidade de variáveis e parâmetros, não estando ainda avaliada com exatidão a influência de algumas delas. Estas variáveis podem ser sintetizadas da seguinte forma:

Dependentes do sólido a transportar: granulometria; densidade; forma; dureza.

Dependentes do fluido carreador: densidade; viscosidade.

Dependentes da instalação: diâmetro interno da tubulação; comprimento; desnível; rugosidade interna; ângulos de inclinação da tubulação; singularidades (estreitamentos, cotovelos e etc.).

Dependentes da mistura: concentração de sólidos em volume e peso; densidade da mistura.

Dependentes do sistema: toneladas de sólido a transportar; velocidade de fluxo; perda de carga.

2.8.4 – Regimes de Fluxo

Suspensões coloidais podem manter-se indefinidamente em suspensão estável. Já com as misturas sólido-líquido usuais no Tratamento de Minérios, isto constitui-se uma exceção, a regra sendo as partículas sedimentarem quando em repouso. Para o transporte é necessário que o escoamento tenha certo grau de turbulência, capaz de manter as partículas sólidas em suspensão. (CHAVES, 2002).

A Figura 2.7 mostra o esquema das distribuições espaciais das partículas e do gradiente de concentração de sólidos em diferentes regimes de escoamento. O perfil de concentração de sólidos está referenciado em termos da relação entre a distância da parte inferior do duto (y) e o diâmetro do duto (D).

Figura 2.7 - Distribuição de partículas e do gradiente de concentração de sólidos em diferentes regimes de escoamento. Fonte: GARCIA (2014).

Fluxo homogêneo: Apresenta uma composição uniforme da mescla em qualquer ponto da secção transversal da tubulação. Não se observam diferenças de concentração de sólidos na secção transversal, e o tamanho das partículas sólidas tem uma distribuição uniforme em toda a seção. Fluxo homogêneo ou aproximadamente homogêneo pode ser encontrado em misturas de alta concentração e tamanho de partículas finas.

As misturas que exibem comportamento homogêneo não tendem a sedimentar e/ou formar depósitos sob condições normais de fluxo, podendo ser consideradas como de fluxo pseudo-homogêneo.

Fluxo heterogêneo: Se caracteriza por apresentar uma composição não uniforme da mistura na seção transversal da tubulação. Apresenta diferenças de concentração de sólidos na seção transversal e as partículas sólidas têm uma

distribuição não uniforme na seção, as partículas maiores e/ou mais pesadas tendem a fluir para a parte inferior da tubulação. Apresenta-se um acentuado gradiente de concentrações através da seção transversal da tubulação.

Fluxo com leito móvel: Parte dos sólidos deposita no fundo da tubulação, mas continua em movimento, criando um leito móvel que acompanha o fluxo. Parte das partículas pode se mover por rolamento ou por saltitação.

Fluxo com leito estacionário: os sólidos depositados no fundo da tubulação deixam de se movimentar. Aumentando a sua quantidade, a seção útil vai diminuindo progressivamente, até o entupimento da linha.

TURIAN e YUAN (1977 apud GARCIA, 2014, p. 33) utilizam um diagrama, conforme apresentado na Figura 2.8, visando caracterizar o tipo de regime de fluxo num tubo, correlacionando a velocidade da mistura e o diâmetro de partícula com o regime de fluxo. Mostra que alterações na velocidade de mistura ocasionam uma alteração do regime de fluxo. Assim, através dessa figura pode-se definir, para um determinado tamanho de partícula, a faixa de variação de velocidade de modo a manter a operação num determinado regime de fluxo.

Figura 2.8 – Diagrama de regime de fluxo no escoamento de polpa mineral. Fonte: TURIAN e YUAN (1977, apud GARCIA, 2014, p. 33).

CHAVES (2002 apud Martins, 2014, p. 20) através da Figura 2.9 correlaciona as propriedades densidade e tamanhos de partículas aos fluxos homogêneo, heterogêneo e a uma região de transição entre ambos. É possível observar como a presença de partículas finas, capazes de formar uma polpa homogênea, que mantém as partículas mais grossas em suspensão, afeta o comportamento das partículas grosseiras.

Figura 2.9 - Variação do escoamento em função da densidade e tamanho de partículas. Fonte: CHAVES (2002 apud MARTINS, 2014, p. 20).

2.8.5 Regimes de Escoamento

Uma classificação muito importante no transporte de polpas é o regime de escoamento ou grau de turbulência que o fluido apresenta, conforme indicado na Figura 2.10. O regime de escoamento pode ser caracterizado como:

Regime Laminar: Em condições de baixas velocidades, as linhas de fluxo se desenvolvem por camadas paralelas, ou seja, todas as partículas se deslocam na mesma direção do fluxo médio.

Observa-se que este regime somente ocorre com polpas de partículas coloidais, no transporte do caulim por exemplo.

Este tipo de escoamento favorece o aparecimento do fluxo heterogêneo na linha.

Regime de Transição: Para condições de maiores velocidades, as linhas de fluxo começam a escorrer de forma desordenada.

Regime Turbulento: Com altas velocidades de transporte, o fluxo apresenta componentes de velocidade em todas as direções do escoamento, este tipo de escoamento é desejado, pois favorece o fluxo homogêneo na linha.

FLUXO TURBULENTO

Figura 2.10 – Regimes de escoamento. Fonte: BRASS ENGINEERING (2006 apud Gomes ,2012, p. 58).

2.8.6 Velocidade Limite de Transporte

A velocidade limite de transporte de uma polpa (V_L) é a menor velocidade na qual o sistema pode ser operado em condições de estabilidade, homogeneidade e sem depósito de partículas no interior do tubo.

A velocidade limite é determinada pelo maior valor entre as velocidades de deposição e transição, ou seja, é a menor velocidade a qual se pode transportar o concentrado assegurando fluxo homogêneo e turbulento (BRASS, 2008).

Se por um lado a velocidade de transporte deve ser suficientemente grande para produzir a turbulência necessária para manter os sólidos em suspensão, ela deve ser a menor possível para reduzir o atrito com as paredes do tubo e consequentemente reduzir a perda de carga (CHAVES, 2002). A Figura 2.11 mostra o comportamento de dois tipos de polpas minerais, homogêneas e heterogêneas, e as velocidades críticas de deposição e transição.

Log Velocidade

Figura 2.11 - Velocidades de transição e deposição do fluido. Fonte: WASP et al. (1976 apud MARTINS, 2014, p. 22).

2.8.6.1 Velocidade de Deposição

DURAND (1953) estabeleceu um modelo clássico para cálculo da velocidade crítica de deposição (V_D) que varia de sistema para sistema em função do tamanho de partículas e da concentração de sólidos:

$$V_D = F_L \sqrt{2gD \frac{\rho_s - \rho_L}{\rho_L}}$$
(2.25)

sendo:

FL - Parâmetro de sustentação dependente da granulometria e concentração;

- D Diâmetro da tubulação (m);
- ρ_s Densidade do sólido (Kg/m³);
- ρ_L Densidade do liquido (Kg/m³);
- g Aceleração da gravidade (m/s²).

O parâmetro F_L pode ser determinado das seguintes maneiras:

 a) Via modelo proposto por SCHILLER e HERBICH (1991), baseado nos trabalhos de DURAND (1953), conforme Equação (2.26):

$$F_L = 1, 3 \cdot C_V^{0,125} (1 - \text{Ex}^{-6,9d_{50}})$$
(2.26)

sendo:

Cv - Concentração volumétrica de sólidos;

d₅₀ - Tamanho das partículas em percentual passante de 50% (mm).

b) Segundo WASP et al. (1977) e KAUSHAL et al. (2002), o parâmetro F_L mostra-se aplicável a partículas que apresentam tamanhos de até 1 mm (Figura 2.12), diminuindo sua influência na velocidade para polpas que apresentam uma distribuição não uniforme de partículas.

Diâmetro da Partícula (mm)

Figura 2.12 - Variação do parâmetro F_L em função da granulometria (d₅₀) e da concentração. Fonte: WASP et al. (1976 apud MARTINS, 2014, p. 22).

c) Através dos ábacos da Figura 2.13 e Figura 2.14 desenvolvidos respectivamente por Durand, em 1953 (material UNIFORME) e por Durand e Condolios, em 1956 (material NÃO UNIFORME).

Figura 2.13 - F_L para material uniforme (CHAVES, 2002).

Figura 2.14 - F_L para material não uniforme (CHAVES, 2002).

A uniformidade de um determinado material será determinada através do coeficiente proposto por CAPUTO (2015), determinado pela Equação (2.27):

$$C_u = \frac{d_{60}}{d_{10}} \tag{2.27}$$

sendo:

Cu - ParaCu < 5</th>- material muito uniforme;Para $5 \le Cu < 15$ - material uniforme;Para $Cu \ge 15$ - material não uniforme;

 d_{60} - 60% das partículas passante na malha em questão;

 $d_{10}\,$ - 10% das partículas passante na malha em questão.

Para concentrações mais altas, WASP et al. (1977), a partir da modificação do modelo de DURAND (1953), apresentam uma correlação para a velocidade crítica de deposição, descrita na Equação (2.28):

$$V_D = 4. \left(\frac{d_{95}}{D}\right)^{\frac{1}{16}} \cdot (C_V)^{\frac{1}{5}} \cdot \sqrt{2gD \frac{\rho_S - \rho_L}{\rho_L}}$$
(2.28)

sendo:

- V_D Velocidade critica de deposição (m/s);
- D Diâmetro interno da tubulação (m);
- d₉₅ -Diâmetro passante 95% da massa (m);
- Cv -Concentração volumétrica de sólidos;
- ρ_s Massa específica dos sólidos (Kg/m³);
- p_L Massa específica do liquido (Kg/m³);
- g Aceleração da gravidade (m/s²).

Uma importante contribuição é observada através dos trabalhos de WASP e SLATTER (2004), que desenvolveram um modelo preditivo para a velocidade de deposição, baseado em operações industriais de bombeamento de polpas minerais, com diâmetros de tubo que variam de 203,2 mm a 459,7 mm. O modelo, observado na Equação (2.29), apresenta uso prático e utiliza variáveis de fácil obtenção.

$$V_D = 0.18. \left(\frac{\rho_S - \rho_L}{\rho_L}\right)^{0.5} \cdot \left(\frac{d_{95} \cdot \rho_S \cdot \sqrt{gD}}{\mu_f}\right)^{0.22} Exp^{4.34C_V}$$
(2.29)

sendo:

- d₉₅ Diâmetro da partícula com 95% passante;
- ρs Massa especifica dos sólidos (kg/m³);
- ρ_L Massa específica do liquido (kg/m³);
- D Diâmetro interno da tubulação (m);
- g Aceleração da gravidade (m/s²);
- μ_f Viscosidade do fluido carreador (Pa.s);
- Cv Concentração volumétrica dos sólidos (em fração).

2.8.6.2 Velocidade de Transição

A velocidade de transição estabelece a diferença entre o fluxo laminar e turbulento, sendo que esta velocidade depende das características reológicas da

mistura (densidade, viscosidade, tensão de cisalhamento) e diâmetro da tubulação entre outros fatores (BRASS, 2008).

WASP e SLATTER (1977), conforme citado por MARTINS (2014), determinaram uma correlação, dada pela Equação (2.30), utilizada no cálculo da velocidade de transição baseado no modelo reológico do plástico de Bingham:

$$V_T = Re_C \cdot \frac{\eta}{D.\rho} \tag{2.30}$$

sendo:

 $Re_{C} = 155. He^{0,35}$ para He < 1,5.10⁵; $Re_{C} = 26. He^{0,50}$ para He > 1,5.10⁵.

O número de Reynolds que define a transição entre regime laminar e turbulento não tem um valor constante, não sendo capaz de determinar com precisão o tipo de regime. Para obter uma melhor aproximação, a Equação (2.31), associa o valor do Reynolds crítico ao número de Hedstrom (He) (WASP et al.,

1977):

$$He = \frac{\rho_{\tau_0 D^2}}{\eta} \tag{2.31}$$

sendo:

V_T - Velocidade de transição (m/s);

Rec - Reynolds crítico (adimensional);

He - Número de Hedstrom (adimensional);

ρ - Massa específica da polpa (kg/m³);

 au_0 -Tensão de cisalhamento crítica (Pa);

- D Diâmetro da tubulação (m);
- η Viscosidade da polpa (Pa.s).

Com base no modelo reológico do plástico de Bingham, determinada a velocidade de transição pela Equação (2.30), dada uma característica reológica de uma polpa, ao associá-la a um diâmetro de tubulação, constará de imediato uma definição a faixa onde se encontrará o fluxo em condição de transição.

2.9 PROPRIEDADES FÍSICAS DAS POLPAS MINERAIS

Uma polpa pode ser descrita como um meio bifásico (líquido/sólido), onde na mineração o fluido carreador universalmente utilizado é a água. Na caracterização física são utilizados os seguintes atributos: massa especifica das fases constituintes (sólido e líquido) e do conjunto; concentração de sólidos; distribuição granulométrica, forma e tamanho das partículas e a viscosidade da polpa.

a) Massa específica e concentrações mássica e volumétrica

Através da Equação (2.32) é feita a caracterização da massa especifica da polpa e as Equações (2.33) e (2.34) apresentam, respectivamente, as concentrações mássica e volumétrica,

$$\rho_{P} = \frac{100}{\frac{C_{W}}{\rho_{S}} + \frac{100 - C_{W}}{\rho_{L}}}$$
(2.32)

sendo:

- ρ_P massa especifica da polpa mineral, Kg/m³;
- C_w concentração mássica da polpa mineral, (%);
- ρs massa específica dos sólidos, kg/m³;
- ρ_{L} massa especifica do liquido, kg/m³.

$$C_w = \frac{m_S}{m_S + m_L} \cdot 100 \tag{2.33}$$

$$C_{\nu} = \frac{\frac{m_S}{\rho_S}}{\frac{m_S}{\rho_S} + \frac{m_L}{\rho_L}} \cdot 100$$
(2.34)

sendo:

- C_w concentração mássica da polpa mineral, (%);
- C_v concentração volumétrica da polpa mineral, (%);
- ms massa de sólidos, kg;
- m∟ massa de liquido, kg.

b) Viscosidade dinâmica (μ_p) e Viscosidade cinemática (ν_p)

Segundo THOMAS (apud MADER, 1987), as viscosidades dinâmica e cinemática de polpas minerais podem ser determinadas, respectivamente, através das Equações (2.35) e (2.36):

$$\mu_{p} = 1,10 \ \mu_{L} \left(1 + 2,5C_{v} + 10,05 \ C_{v}^{2} + 0,00273 \text{Exp}^{16,6Cv}\right)$$
(2.35)

sendo:

 μ_{P} o coeficiente de viscosidade dinâmica da polpa, Pa.s;

μ_L o coeficiente de viscosidade dinâmica do líquido (água), Pa.s;

C_V a concentração volumétrica de sólidos na polpa, %.

$$v_p = 0.0098 \,(\mu_p/\gamma_p)$$
 (2.36)

sendo:

 v_p - coeficiente de viscosidade cinemática da polpa, m²/s;

μ_p - coeficiente de viscosidade dinâmica da polpa, Pa.s;

 γ_p - peso especifico da polpa, N/m³.

c) Caracterização do regime de suspensão/escoamento

Segundo ECM S.A. (2004), as polpas poderão apresentar os seguintes regimes de escoamento:

c.1) Polpas não-sedimentárias: são compostas por partículas mais finas e exibem uma distribuição quase uniforme de concentração no perfil da tubulação, conforme a Figura 2.15.

Experiências práticas e testes de laboratórios têm demonstrado que os sólidos das polpas não-sedimentárias possuem velocidades de decantação inferiores ou entre 0,06 a 0,15 cm/s. O comportamento reológico real de uma mistura não-sedimentar pode ser mais bem determinado por ensaios com um viscosímetro rotacional.

Polpas com esse comportamento demandam apenas condições de turbulência branda para efetuar o seu transporte, e via de regra aceitam suspensão dos sólidos mesmo após paradas demoradas.

Figura 2.15 - Distribuição da concentração de sólidos no perfil da tubulação para polpa não-sedimentária. Fonte: ECM S.A. (2004).

c.2) Polpas sedimentárias: são compostas por partículas sólidas maiores e/ou peso específico maior que não contribuem para as propriedades do meio líquido. A distribuição da concentração dos sólidos no perfil é bastante assimétrica, conforme a Figura 2.16.

Os sólidos destas polpas têm velocidades de decantação bem superiores a 0,15 cm/s.

Estas polpas dependem de altas velocidades de transporte e, portanto, alta turbulência para manter os sólidos em suspensão.

Figura 2.16 - Distribuição da concentração de sólidos no perfil da tubulação para polpa sedimentária. Fonte: ECM S.A. (2004).

c.3) Polpas Transicionais: são polpas que tem um comportamento similar às polpas sedimentárias, percebe-se que sua distribuição de concentração assemelha-se à da polpa sedimentária, conforme a Figura 2.17.

A maior parte de todas as polpas que ocorrem no Tratamento de Minérios se encaixa

nesta classificação de comportamento.

As partículas finas presentes na polpa fazem com que o fluido fique mais denso e melhore a sustentação, interferindo desta forma na velocidade de decantação.

Figura 2.17 - Distribuição da concentração de sólidos no perfil da tubulação para polpa transicional. Fonte: ECM S.A.(2004).

Na prática há três critérios usados para estimar qual fração dos sólidos que irá contribuir efetivamente para o comportamento de meio denso. Conforme ECM S.A (2004), o critério apoiado com maior rigor teórico é dos autores M.E. Charles e J.J. Vocadlo da Worthington (Fabricante de bombas). Eles partiram do princípio que todos os finos com uma velocidade de decantação que obedece a lei de Stokes, prestarão sua contribuição ao meio denso. A determinação do diâmetro das partículas que contribuem para o meio denso é calculada segundo a Eguação 2.37:

$$\boldsymbol{d} < \boldsymbol{0}, \boldsymbol{12} \left[\left(\frac{\gamma_s}{\gamma_l} \right) - \boldsymbol{1} \right]^{\frac{1}{3}}$$
(2.37)

sendo: **d** é o diâmetro das partículas vetor; γ_s é o peso especifico dos sólidos; γ_l é o peso específico do líquido carreante.

Os outros dois critérios usados para estimar qual a fração dos sólidos que contribue são os defendidos pela ECM S.A (2004) que são da WARMAN (fabricante de bombas de polpa) e da SOGREAH (sigla francesa para "estudos Grenoble hidráulica e aplicações da empresa" a qual é uma empresa de consultoria de engenharia da água, energia, meio ambiente, transporte marítimo, indústria e setores de desenvolvimento urbano), respectivamente, apontam as partículas inferiores a 200 µm e 50 µm.

Há que considerar os estudos de GILLIES e SHOOK (1991) e WILSON et al. (1997) os quais assumem que particulas mais finas que 75 µm (aprox. 200#) constituem o que é considerado o veiculo de transporte (ou vetor de transporte), ou seja, é a fração das particulas de uma polpa mineral as quais podem modificar a viscosidade e que ajudam a manter as frações grossas em suspensão durante o transporte turbulento por bombemento em tubulação.

Observam-se também os estudos de SELLGREN e WILSON (2007) os quais consideram partículas mais finas que 40 µm.

Estes "cortes" (definição da malha abaixo da qual a polpa é considerada o vetor) são de algum modo arbitrários, ou seja, não levam em consideração alguma influência do peso especifico dos grãos nesta demarcação destes tamanhos de grãos.

A Figura 2.18 mostra os efeitos relativos de concentração volumétrica e velocidade de transporte para polpas transicionais, considerando constantes os valores de granulometria, peso específico e massa transportada. Em condições de baixa velocidade ou alta concentração, a polpa se comporta como uma sedimentária e para altas velocidades ou baixas concentrações, como uma não-sedimentária.

Figura 2.18 - Comparação dos efeitos relativos de concentração e velocidade de transporte. Fonte: ECM S.A. (2004).

2.10 EQUAÇÕES BÁSICAS DA FLUIDODINÂMICA DAS POLPAS MINERAIS

a) Equação da Continuidade

A equação da continuidade é estabelecida quando se considera que o escoamento atravessa um determinado volume de controle (Figura 2.19), ou seja, o escoamento entra no volume de controle (VC) por uma área de entrada (AE) e sai por uma área de saída (AS) (ROMA, 2006).

Figura 2.19 - Volume de controle. Fonte: ROMA

A massa que atravessa uma superfície dividida pelo tempo é o fluxo de massa, sendo definida pela Equação (2.38), sendo:

$$\frac{\text{massa que entra no VC}}{\Delta t} - \frac{\text{massa que sai no VC}}{\Delta t} = \frac{\text{variação massa no VC}}{\Delta t} \quad (2.38)$$

Pode-se escrever a Equação (2.39) da seguinte forma:

$$\frac{m_{entra}}{\Delta t} - \frac{m_{sai}}{\Delta t} = \frac{\Delta m_{VC}}{\Delta t}$$
(2.39)

Aplicando-se na Equação (2.39) o conceito de limite para o intervalo Δt tendendo a zero tem-se:

$$\dot{M}_{entra} - \dot{M}_{sai} = \frac{dm_{VC}}{dt}$$
(2.40)

Aplicando a definição de fluxo de massa e calculando a massa por intermédio da integração do volume de controle, tem-se:

$$\int_{AE} \rho(\vec{v}.d\vec{A}) + \int_{AS} \rho(\vec{v}.d\vec{A}) = \frac{d}{dt} \int_{VC} \rho dV$$
(2.41)

Combinado as duas primeiras integrais, tem-se a equação da continuidade escrita de forma mais simples:

$$\int_{SC} \rho\left(\vec{v}.\,d\vec{A}\right) + \frac{d}{dt} \int_{VC} \rho dV = 0 \tag{2.42}$$

Simplificando ainda mais a equação acima pode ser escrita como:

$$\sum_{saida} \rho VA - \sum_{entradas} \rho VA = 0 \quad \Rightarrow \quad \sum_{saida} \dot{m} - \sum_{entradas} \dot{m} = 0 \tag{2.43}$$

Sendo $\dot{m} = \rho V A = vazão mássica (massa por unidade de tempo).$

Para escoamento incompressível (densidade constante), $\rho_1 = \rho_2 = \rho$, a Equação (2.43) resulta em:

$$\sum_{saida} \rho VA = \sum_{entradas} \rho VA \implies \sum_{saida} \dot{Q} = \sum_{entradas} \dot{Q}$$
(2.44)

sendo:

$\dot{Q} = VA = vazão volumétrica (volume por unidade de tempo).$

b) Equação da Quantidade de Movimento Linear

No caso de um sistema fluido movendo-se em relação a um volume de controle (VC) fixo, a segunda lei de Newton estabelece que a soma de todas as forças externas agindo sobre o sistema é igual à taxa de variação da quantidade de movimento linear do sistema, representada pela Equação (2.45) (FOX et al., 2011).

$$\vec{F} = \frac{d\vec{P}}{dt} \Big)_{sistema}$$
(2.45)

Sendo que a quantidade de movimento linear do sistema é dada por

$$\vec{P}_{sistema} = \int_{M_{(sistema)}} \vec{v} \, dm = \int_{\Psi(sistema)} \vec{v} \, \rho d\Psi$$
 (2.46)

e uma força resultante, \vec{F} , a qual inclui forças de campo e de superficie atuando sobre o sistema, segundo a Equação (2.47).

$$\vec{F} = \vec{F}_{S} + \vec{F}_{B} \tag{2.47}$$

A relação fundamental entre a taxa de variação da propriedade extensiva, P, do sistema e as variações dessa propriedade associada com o volume de controle é obtida pela Equação (2.48).

$$\left.\frac{d\vec{P}}{dt}\right)_{sistema} = \frac{\partial}{\partial t} \int_{VC} \vec{v} \,\rho d\Psi \,+\, \int_{SC} \vec{v} \,\rho \vec{v}.\, d\vec{A} \tag{2.48}$$

Da Equação (2.45) tem-se que

$$\left.\frac{d\vec{P}}{dt}\right)_{sistema} = \vec{F}\right)_{sobre\ o\ sistema}$$
(2.49)

e considerando que o sistema e o volume de controle (VC) coincidem no tempo inicial t_o , então

$$\vec{F}$$
)_{sobre o sistema} = \vec{F})_{sobre o volume de controle}

Então, combinando as Equações (2.48) e (2.49) obtém-se a formulação da 2^a lei de Newton para um volume de controle não submetido a acelação, dada pela Equação (2.50).

$$\vec{F} = \vec{F}_{S} + \vec{F}_{B} = \frac{\partial}{\partial t} \int_{VC} \vec{v} \rho d\Psi + \int_{SC} \vec{v} \rho V. d\vec{A}$$
(2.50)

Esta equação da quantidade de movimento linear para um volume de controle mostra que a soma das forças (de superficie e de campo) atuando sobre um volume de controle, não submetido à aceleração, é igual à soma da taxa de variação da quantidade de movimento no interior do volume de controle com a taxa liquida do fluxo da quantidade de movimento saindo da superficie de controle.

c) Equação de Bernoulli

Em Mecânica dos Fluidos, a equação de Bernoulli permite modelar o escoamento de um sistema estacionário. Deduzida por Daniel Bernoulli (1700 – 1782), ela relaciona a energia potencial, energia cinética e a energia associada à altura de pressão.

Para um fluido ideal, sem atrito, a energia total permanece constante ao longo de uma linha de corrente, a equação de Bernoulli (2.51) pode ser escrita da forma:

$$H = Z + \frac{P}{\gamma} + \frac{V^2}{2g}$$
(2.51)

sendo:

H = altura total de energia (m);

Z = cota geométrica (m);

P = altura de pressão (m);

 γ = peso específico do fluido (N/m³);

V = velocidade (m/s);

g = aceleração da gravidade (m/s²).

Uma aplicação simplificada da equação de Bernoulli pode ser feita no sistema mostrado na Figura 2.20.

Figura 2.20 – Aplicação da equação de Bernoulli em um sistema simples. Fonte: ROMA (2006).

Considerando que o fluido seja a água e que o sistema esteja estático (V = 0), através do princípio de conservação de energia (H₁ = H₂), a pressão P₂ pode ser obtida utilizando a equação de Bernoulli:

$$Z_1 + P_1 = Z_2 + P_2 \implies P_2 = Z_1 - Z_2 + P_1$$

Sistemas mais complexos, como mostrado na Figura 2.21, podem ser modelados através da equação de Bernoulli modificada segundo a Equação 2.51. Considerando o escoamento isotérmico e estacionário de um fluido incompressível entre pontos quaisquer, neste caso **1** e **2**, pode ser analisado macroscopicamente através da equação, dada por:

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 + H_F = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_t$$
(2.52)

Em que $P_1 e P_2$, $V_1 e V_2$, $Z_1 e Z_2$ são as pressões, as velocidades médias e as cotas nos pontos 1 e 2, respectivamente.

 H_F é a carga fornecida pela bomba, h_t é o somatório de todas as perdas de carga ocasionadas entre os pontos 1 e 2, g é a aceleração da gravidade e ρ é a densidade do fluido.

Na Equação (2.52), para fechar o balanço de massa foi adicionada a parcela da perda de energia por atrito **(h**t**)**.

A determinação desta perda de carga em sistemas de transporte de polpa vem sendo objeto de estudos, com diversas metodologias e ensaios experimentais em unidades de bombeamento piloto.

Experimentalmente a perda de carga total, **h**t, pode ser calculada conhecendo todos os outros termos da Equação (2.52), mas na prática procura-se determinar a carga requerida à bomba para que o fluido seja transportado.

Conforme mencionado acima, h_t consiste na soma de todas as perdas ocasionadas em um determinado sistema de bombeamento. Incluem-se as perdas de carga distribuídas, h_d , as quais são provocadas pelo atrito existente na parede da tubulação reta, e as perdas de carga localizadas, h_s , ocasionadas pelos acidentes que compõem um sistema de tubulação.

Geralmente este último tipo de perda é devido à sobreposição de dois ou mais efeitos como: mudança na direção ou na área de escoamento e o atrito do fluido com a parede de cada elemento.

Figura 2.21 – Aplicação da equação de Bernoulli em um sistema complexo. Fonte: ROMA (2006).

2.11 DETERMINAÇÃO DAS PERDAS DE CARGA – FATORES DE ATRITO

2.11.1 Introdução

No escoamento de polpas minerais, cujos comportamentos são de fluidos não-newtonianos, as correlações encontradas na literatura para a predição dos fatores de atrito, na maioria das vezes, fornecem valores discordantes ou são específicos a certas características apresentadas pelo fluido e determinadas condições de escoamento.

A manutenção de um gradiente de pressão é necessária o suficiente para manter o escoamento em regime estacionário.

O escoamento das polpas pode ser homogêneo ou heterogêneo, e pode ou não ocorrer a formação de leito.

Com relação aos fluxos homogêneos, o gradiente de pressão ocorre por dois mecanismos: dissipação viscosa (cisalhamento entre camadas de fluido e paredes de dutos) e inercial (variação da velocidade média de fluxo).

2.11.2 Perda de carga distribuída, hd

2.11.2.1 Fator de atrito para fluidos newtonianos

Na hipótese de escoamento horizontal por uma seção de tubo reto com área de escoamento constante, sem bomba e na ausência de qualquer forma de acidentes, a Equação (2.52) pode ser simplificada a:

$$\frac{P_1}{\rho g} - \frac{P_2}{\rho g} = \frac{\Delta P}{\rho g} = h_d \tag{2.53}$$

No escoamento turbulento a queda de pressão não pode ser avaliada analiticamente, sendo necessário recorrer a resultados experimentais e utilizar a análise dimensional para correlacioná-los.

Em uma forma funcional a queda de pressão é dada por,

$$\Delta P = \Delta P(D, L, \mathcal{E}, V, \rho, \mu) \tag{2.54}$$

Em que, ΔP é queda de pressão, D é o diâmetro da tubulação, L é o comprimento de tubo, \mathcal{E} é a rugosidade do duto, V é a velocidade média, ρ é a densidade do fluido e μ é a viscosidade dinâmica do fluido.

A análise dimensional do problema permite expressar a perda de pressão por meio de grupos adimensionais, dados por

$$\frac{\Delta P}{\rho V^2} = \phi\left(\frac{DV\rho}{\mu}, \frac{L}{D}, \frac{\varepsilon}{D}\right)$$
(2.55)

Sendo a queda de pressão, ΔP, diretamente proporcional a relação (L/D), tem-se,

$$\frac{\Delta P}{\rho V^2} = \frac{L}{D} \phi_1 \left(Re, \frac{\varepsilon}{D} \right)$$
(2.56)

em que o Re é o número de Reynolds definido por,

$$Re = \frac{DV\rho}{\mu}$$
(2.57)

Visto que a função, ϕ_1 , ainda é indeterminada, é permitido introduzir uma constante (número 2) no lado direito da Equação (2.56). Assim,

$$\frac{\Delta P}{\rho V^2} = 2 \frac{L}{D} \phi_2 \left(Re, \frac{\varepsilon}{D} \right)$$
(2.58)

A função desconhecida, $\phi_2\left(Re, \frac{\varepsilon}{D}\right)$, é definida como fator de atrito, f:

$$f \equiv \phi_2\left(Re, \frac{\varepsilon}{D}\right) \tag{2.59}$$

Deste modo, a queda de pressão ao longo da tubulação reta pode ser dada por,

$$\Delta P = 2\rho f \frac{L}{D} V^2 \tag{2.60}$$

O fator de atrito, **f** , é chamado de fator de atrito de Fanning, mas é comum encontrar na literatura definição do fator de atrito de Darcy, **f**_D. No entanto, as duas definições são correlacionadas por $f_D = 4f$.

No caso do escoamento laminar, Re < 2.100, a perda de pressão pode ser calculada facilmente pela correlação de Hagen-Poiseuille, dada por,

$$\Delta P = \frac{32\mu LV}{D^2} \tag{2.61}$$

Da igualdade das Equações (2.60) e (2.61) obtém-se,

f = 16/Re (2.62)

No regime laminar, o fator de atrito e dependente apenas do número de Reynolds, ou seja, é independente da rugosidade relativa do duto.

No caso do escoamento turbulento a queda de pressão, ΔP , ou a perda de carga, h_d , não são obtidas facilmente como acontece com o escoamento em regime laminar. Para obter a perda de carga ou pressão é necessário estimar o fator de atrito, **f**. Na literatura existem várias correlações para a estimativa do fator de atrito de fluidos newtonianos tanto em duto liso, como no rugoso.

As correlações mais citadas em livros de Mecânica dos Fluidos e Fenômenos de Transporte são mostradas na Tabela 2.4. Nota-se, nesta tabela, que

as correlações de von Karman e Nikuradse, para os dois tipos de tubo, são similares.

As correlações de von Karman são teóricas enquanto as de Nikuradse são empíricas. Alguns pesquisadores referem-se à Equação 2.66 como correlação de Karman-Nikuradse.

Um método alternativo para determinar o fator de atrito de Fanning é através do diagrama de Moody, Figura 2.22. Moody (1944) apresentou graficamente a relação existente entre fator de atrito, número de Reynolds e rugosidade relativa, **\mathcal{E}/\mathbf{D}**. Na construção deste ábaco, o autor combinou as Equações (2.62), (2.65), (2.67) e (2.68). A acurácia deste método é em torno $\pm 15\%$ (WHITE, 2011).

Figura 2.22 – Fator de atrito de Fanning para fluidos newtonianos (MOODY, 1944). Fonte: PERRY e GREEN (1999).

Autor	Correlação	Observações	Duto	Citado por	
Blasius	$f = \frac{0.079}{Re^{0.25}} \tag{2.63}$	Turbulento 4.000 < Re <10⁵	Liso	BIRD et al. (1960); FOX ; PRITCHARD; MCDONALD (2011) e WHITE (2011)	
von Karman	$\frac{1}{\sqrt{f}} = 4,06\log\left(Re\sqrt{f}\right) \tag{2.64}$	Turbulento	Liso	MCCABE et al. (2005) e WELTY et al. (1984)	
von Karman	$\frac{1}{\sqrt{f}} = 4,06\log\frac{Re}{\varepsilon} + 3,36$ (2.65)	Turbulento $\left(\frac{Re}{\varepsilon}\right)/\text{Re}\sqrt{f} < 0,005$	Rugoso	SKELLAND (1967) e WELTY et al. (1984)	
Nikuradse	$\frac{1}{\sqrt{f}} = 4,0\log(Re\sqrt{f}) - 0,40$ (2.66)	Turbulento	Liso	FOUST et al. (1982); SKELLAND (1967) e WELTY et al. (1984)	
Nikuradse	$\frac{1}{\sqrt{f}} = 4,0\log\frac{Re}{\varepsilon} + 3,48$ (2.67)	Turbulento $\left(\frac{Re}{\varepsilon}\right)/\text{Re}\sqrt{f} < 0,005$	Rugoso	SKELLAND (1967) e WELTY et al. (1984)	
Colebrook	$\frac{1}{\sqrt{f}} = 4,0\log\frac{Re}{\varepsilon} + 3,48 - 4,0\log\left(1 + 9,35\frac{\frac{Re}{\varepsilon}}{Re\sqrt{f}}\right) $ (2.68)	Transição $\left(\frac{Re}{\varepsilon}\right)/\text{Re}\sqrt{f} > 0,005$	Rugoso	FOX ; PRITCHARD; MCDONALD (2011); SKELLAND (1967); WHITE (2011) e WELTY et al. (1984)	

Tabela 2.4 - Correlações para o fator de atrito turbulento de fluidos newtonianos.
--

Fonte: WHITE (2011).

2.11.2.2 Fator de atrito para fluidos não-newtonianos

A maior parte das correlações propostas na literatura para predição do fator de atrito foram obtidas a partir de análises teóricas do modelo de Ostwald-de-Waele, em regime laminar. Entretanto, o escoamento deste tipo de fluido em regime turbulento continua sendo motivo de inúmeras pesquisas.

Na bibliografia são encontradas as seguintes correlações do fator de atrito no escoamento turbulento de fluidos não-newtonianos:

- a) No caso de fluidos de Ostwald-de-Waele, WELTMANN (1956) usou a viscosidade aparente, μ_a, definida pela relação entre a tensão cisalhante na parede do tubo, τ_w, a taxa de deformação na parede do tubo, γ_w, dada por, μ_a = τ_w/γ_w (SKELLAND, 1967).
- b) Destaca-se nesta categoria correlações do tipo Blasius, dada por,

$$f = a Re^{-b}$$
, (2.69)

em que **a** e **b** são parâmetros, funções das propriedades do fluido.

Shaver & Merrill (1959) utilizando da metodologia de DODGE e METZNER (1959), trabalhando com escoamento turbulento de soluções aquosas diluídas de carboximetilcelulose (CMC), carbopol e polisobutileno em ciclo-hexano, correlacionaram com o modelo de Ostwald-de-Waele o fator de atrito através de equação do tipo Blasius, dada por, $f = \frac{0.079}{n^5 (Re_{SM})^{\frac{2.63}{10.5^n}}}$ (2.70)

onde Resm é o número de Reynolds de Shaver & Merrill (1959), definido por,

$$Re_{SM} = \frac{DV\rho}{K\left(\frac{8V}{D}\right)^{n-1} \cdot \left(\frac{3n+1}{4n}\right)^n}$$
(2.71)

Cabe ressaltar que o desvio máximo encontrado pelos autores ficou entre +33% e -15% para $0,53 \le n < 1$.

c) Via a utilização da "lei de Prandtl" para correlacionar o fator de atrito, onde as equações deste tipo têm a seguinte forma,

$$\frac{1}{\sqrt{f}} = A \log(Re f^B) + C \tag{2.72}$$

em que A, B e C são parâmetros que dependem das propriedades reológicas do fluido.

DODGE e METZNER (1959), através de um estudo teórico e experimental utilizando soluções de CMC, carbopol e argila correlacionaram o fator de atrito ao número de Reynolds generalizado definido por METZNER e REED (1955). Estes autores adotaram as hipóteses válidas para o escoamento de fluidos newtonianos na descrição do escoamento de fluidos não-newtonianos (SKELLAND, 1967). Então, a correlação obtida por DODGE e METZNER (1959), no caso especial de fluidos de Ostwald-de-Waele, é dada por,

$$\frac{1}{\sqrt{f}} = \frac{4.0}{n^{0.75}} \log \left[Re_{MR} f^{\left(1 - \frac{n}{2}\right)} \right] - \frac{0.4}{n^{1.2}}$$
(2.73)

em que Remr é o número de Reynolds de METZNER e REED (1955) definido por,

$$Re_{MR} = \frac{DV\rho}{k\left(\frac{8V}{D}\right)^{n-1}\left(\frac{3n+1}{4n}\right)^n}$$
(2.74)

Os dados experimentais obtidos por Dodge & Metzner (1959), para fluidos não newtonianos, foram correlacionados pela Equação (2.73) com um desvio médio de 1,9% para $0,4 \le n \le 1,0$.

Estes autores apresentaram o fator atrito de Fanning obtido com auxílio da Equação (2.73) em forma de diagrama (Figura 2.23), tanto para a região investigada como para a extrapolada.

No desenvolvimento da correlação dada pela Equação (2.73) para predição do fator de atrito, os dados referentes ao escoamento de soluções de CMC não foram levados em conta. Segundo os autores, estas soluções apresentaram comportamento diferente daqueles observados para outras soluções. Neste caso, o fator de atrito para escoamento turbulento parece ser uma extensão do regime laminar e o efeito do diâmetro da tubulação sobre o fator de atrito foi evidente. Tais anomalias foram atribuídas a algum caráter viscoelástico apresentado por estas soluções.

DODGE e METZNER (1959) também relacionaram seus dados experimentais a uma equação do tipo Blasius. Neste método, os parâmetros definidos na Equação (2.70) são obtidos graficamente. Mais tarde, estes dados foram trabalhados por Schuh (1964) e resultaram nas seguintes expressões (MACHADO, 2002):

$$a = \frac{(\log n + 3,93)}{50}$$
(2.75)
$$b = \frac{(1,75 - \log n)}{2}$$
(2.76)

$$=\frac{(1,75-10)}{7}$$
 (2.76)

Observa-se que no caso de fluidos newtonianos, as expressões acima reduzem a equação de Blasius, Equação (2.70); isto é, a = 0,079 e b = 0,25.

Figura 2.23 - Fator de atrito de Fanning para escoamento de fluidos nãonewtonianos (DODGE e METZNER, 1959). Fonte: PERRY e GREEN (1999).

Neste contexto apresentado, visando a diferenciação dos fatores de atrito entre as frações de polpas de bauxita deste estudo, denominadas grossos, finos e composta, variando os percentuais de sólidos em peso (30%; 40%; 50% e 60%) em regimes caracterizados pelo número de Reynolds, em tubulação de aço (diâmetro interno 0,60 m), resultando em modelos de potência e Bingham, este trabalho recorre às seguintes correlações adotadas por DARBY e MELSON (2011), conforme descrito a seguir.

c.1) Fluidos de lei da potência – correlações de Dodge e Metzner

Modelo presente na maioria das polpas minerais, cuja equação característica é definida por

$$\tau = K \mathbb{Y}^n \tag{2.77}$$

em que,

 τ é a tensão de cisalhamento (Pa); **Y** é taxa de cisalhamento (1/s); **K** é o índice de consistência (Pa.sⁿ) e **n** é índice de comportamento de fluxo (adimensional).

No caso de **n** < **1**, a viscosidade aparente diminui com o acréscimo da tensão de cisalhamento, sendo nesta condição o fluxo denominado de pseudoplástico ou shear-tinning.

No caso de n > 1, a viscosidade aparente aumenta com o acréscimo da tensão de cisalhamento, sendo nesta condição o fluxo denominado de dilatante ou shear-tickening.

No caso de **n = 1**, o fluido é de comportamento Newtoniano.

Parâmetros da modelagem:

Número de Reynolds, demonstrado por Skelland (1967), definido por:

$$Re = \frac{D^{n}V^{(2-n)}\rho}{8^{(n-1)}K\left(\frac{3n+1}{4n}\right)^{n}}$$
(2.78)

em que,

D é o diâmetro da tubulação (m); **V** é a velocidade do fluxo (m/s) e ρ é a massa específica da polpa mineral (kg/m³); **K** é o índice de consistência (Pa.sⁿ) e **n** é o índice de comportamento (adimensional), ambos parâmetros de caracterização reológica da polpa mineral.

O estudo mostra que Reynolds aumenta com o decréscimo de **n**, e o valor do fator de atrito (**f**) reduz para valores decrescentes de **n** (MALIN, 1997).

No caso de Re < 2100, o fluxo é laminar e o fator de atrito de Fanning (f) é calculado por,

$$f = \frac{16}{Re} \tag{2.79}$$

No caso de fluxo turbulento, a seguinte correlação foi desenvolvida por DODGE e METZNER:

$$\frac{1}{\sqrt{f}} = \frac{4.0}{n^{0.75}} \log[(Re.f^{\left(1-\frac{n}{2}\right)}] - \frac{0.4}{n^{1.2}}$$
(2.80)

A perda de carga (pressão) é determinada por

$$\Delta P = 2f\rho V^2(\frac{L'}{D}) \tag{2.81}$$

$$L' = L + Le$$
 (2.82)

em que,

L e Le são respectivamente o comprimento e o comprimento equivalente de maneira a calcular as perdas de carga estáticas na tubulação devido as singularidades (curvas, reduções, válvulas e etc), definidas por:

$$Le = \frac{KD}{4f} \tag{2.83}$$

c.2) Fluidos Plásticos de Bingham

São caracterizados por fluidos de comportamento de corpo rígido a baixas tensões de cisalhamento, mas fluem como fluidos de comportamentos viscosos a altas tensões de cisalhamento. Estes comportamentos são demonstrados por polpas e lamas minerais, suspensões de sólidos em líquidos, tintas, emulsões e espumas entre outros.

O modelo de Bingham é descrito pela seguinte relação:

$$\tau = \tau_0 + \mu_p \dot{\mathbf{y}} \tag{2.84}$$

em que,

τ é tensão de cisalhamento (Pa); \dot{V} é taxa de cisalhamento (1/s); τ₀ é a tensão inicial de cisalhamento (Pa) e **μ**_p é a viscosidade plástica (Pa.s).

Parâmetros da modelagem:

Número de Reynolds definido por:

$$Re = \frac{DV\rho}{\mu_p} \tag{2.85}$$

em que,

D é o diâmetro interno da tubulação (m); **V** é a velocidade do fluxo (m/s) e ρ é a massa específica do fluido (kg/m³).

No caso de fluxo laminar, o fator de atrito (f) é determinado pela equação de Buckingham Reiner:

$$f_L = \frac{16}{Re} \left[1 + \frac{1}{6} \left(\frac{He}{Re} \right) - \frac{1}{3} \left(\frac{He^4}{f^3 Re^7} \right) \right]$$
(2.86)

em que

He é o número de Hedstrom, o qual é calculado por

$$He = \frac{D^2 \rho \tau_0}{\mu p^2}$$
(2.87)

No caso de fluxo turbulento, uma equação empírica foi desenvolvida por Darby & Melson, sendo

$$f_T = \frac{10^a}{Re^{0.193}} \tag{2.88}$$

$$a = -1,47[1 + 0,146 \exp(-2,9x10^{-5}He)]$$
(2.89)

O fator de atrito (f) para um um fluido plástico de Bingham segundo o número de Reynolds de acordo com a equação:

$$f = (f_L^m + f_T^m)^{\frac{1}{m}}$$
(2.90)

em que

 f_L é fator de atrito em fluxo laminar e f_T é o fator de atrito em fluxo turbulento.

O fator **m** é calculado segundo a equação

$$m = 1,7 + 40,000/Re \tag{2.91}$$

A perda de carga é calculada segundo a equação

$$\Delta P = 2f\rho V^2(\frac{L'}{D}) \tag{2.92}$$

sendo

$$L' = L + Le \tag{2.93}$$

L e Le são respectivamente o comprimento e o comprimento equivalente de maneira a calcular as perdas de carga estáticas na tubulação devido as singularidades (curvas, reduções, válvulas e etc), definidas por:

$$Le = KD/4f \tag{2.94}$$

c.3) Fluidos Herschel-Bulkley

Segundo Quaresma (2007) e Oliveira (2007), para o caso de fluidos não-Newtonianos que seguem o modelo reológico de Herschel-Bulkley, as tensões cisalhantes são descritas a partir da seguinte expressão:

$$\tau_{rz} = \tau_0 + \left(-\frac{du}{dr}\right)^n; \quad para \ \tau_{rz} \ge \tau_0$$

$$\frac{du}{dr} = 0 \qquad ; \quad para \ \tau_{rz} < \tau_0$$
(2.95)

Onde τ_{rz} é a tensão de cisalhamento; τ_0 é a tensão limite de escoamento; $\frac{du}{dr}$ é gradiente de velocidade; **k** e **n** são os índices de consistência e de comportamento para o fluido de Herschel-Bulkley.

A correlação procurada para o fator de atrito para os fluidos que seguem o modelo de Herschel-Bulkley é definida por Quaresma (2007) e Oliveira (2007) segundo a seguinte expressão:

$$\frac{1}{\sqrt{\frac{f}{2} - \frac{Y^{n/2 - n}}{\operatorname{Re}^{2/2 - n}}}} = \frac{1}{k} \ln \left[\operatorname{Re}^{1/n} \frac{(1 - \tilde{a})}{2} \left(\sqrt{\frac{f}{2} - \frac{Y^{n/2 - n}}{\operatorname{Re}^{2/2 - n}}} \right)^{2/2 - n} \right] + \frac{(\tilde{a} - 1)(\tilde{a} + 3)}{2k} + C$$
(2.96)

Onde os grupos adimensionais que compõem esta equação estão relacionados abaixo:

$$\begin{split} \tilde{a} &= \frac{2Y^{n/2-n}}{f \, R e_g^{2/2-n}} \qquad Y = \frac{D^2 \rho \tau_0^{2-n/n}}{k^{2/n}} \\ f &= \frac{2\tau_w}{\rho u_m^{2}} \qquad R e = \frac{\rho u_m^{2-n} D^n}{k} \end{split} \tag{2.97}$$

Esta equação (2.97) pode ser resolvida numericamente para o fator de atrito de Fanning, admitindo-se os fatores de **k** e **C(x)** equivalentes aos resultados experimentais de Kárman-Nikuradse (1993), sendo 0,41 e 5,55 respectivamente.

2.11.3 Perda de carga localizada, hs

A perda de carga em acidentes é causada por atrito da parede, alteração na direção do escoamento, obstruções na trajetória do fluido e mudanças abruptas ou graduais na área de escoamento. Na maioria dos acidentes a contribuição devida ao atrito é menor que as outras três (CRANE COMPANY, 1976).

Dentre os diversos tipos de acidentes são encontrados: reduções, expansões, joelhos, curvas, tês, luvas, uniões, niples e outros. As reduções e expansões apresentam mudança na área de escoamento enquanto joelhos, tês e curvas alteram a direção do escoamento.

Devido à sua geometria simples, as uniões, niples e luvas oferecem pouca resistência ao escoamento, enquanto a perda de carga ocasionada em válvulas é o resultado do tipo de configuração geométrica.

As perdas de carga ocasionadas em acidentes podem ser expressas em função do coeficiente de perda de carga, **K**, dado por,

$$K = \frac{h_s}{V^2/2g} \tag{2.98}$$

em que,

K é definido como sendo o numero de cargas cinéticas perdidas, h_s é a perda de carga devido ao acidente; **V** é a velocidade média do fluido e **g** é a aceleração da gravidade. Alternativamente, a perda de carga também pode ser expressa como,

$$h_s = 4f \frac{L_e}{D} \frac{V^2}{2g}$$
(2.99)

em que,

f é o fator de atrito de Fanning, L_e/D é o comprimento equivalente do acidente em diâmetros de tubo reto que causa a mesma perda de carga quando submetido as mesmas condições de escoamento.

Da igualdade das Equações (2.88) e (2.89) tem-se,

$$K = 4f \frac{L_e}{D} \tag{2.100}$$

Cabe ressaltar que o valor de K pode oscilar entre 0,01 e 5,00, dependendo do tipo de singularidade.

Deve-se prestar atenção à definição do valor de **V**, no sentido de sua correspondência com a velocidade antes ou depois da singularidade.

Os valores de **K** das singularidades que se apresentam com maior frequência, podem ser verificados na Tabela 2.5. Estes valores de singularidade são simplesmente valores médios, e variam de um fornecedor para outro. Devendo ser utilizada a informação proporcionada pelo fabricante.

Singularidades	К	
45 Standard	0,35	
90 Standard	0,50	
90 Raio Longo	0,45	
Uniões	0,04	
Comporta	0,17	
Válvulas Borboleta	0,24	
Válvulas Diafragma	2,30	
Válvulas Ângulo	3,00	
Válvulas Globo	6,40	
Válvulas de Retenção (check)	2,00	
Válvulas de Retenção (pé)	15,00	

Tabela 2.5 - Valores de singularidades K

Fonte: MARTINS (2014).

2.12 USO DE POLÍMEROS REDUTORES DE ARRASTE

A redução de arrasto por adição de polímeros vem sendo estudada por vários pesquisadores de diversas áreas desde a sua descoberta em 1949 por Toms. Estes polímeros apresentam algumas características que lhes conferem a propriedade de redutores de arrasto, como cadeia molecular linear, peso molecular acima de 1,0x10⁶ Da (Dalton). Os efeitos visados são a economia de energia, a redução da perda de carga e o aumento da capacidade de transporte. As dosagens são de 10 a 100 ppm e devem ser determinadas experimentalmente, bem como a escolha do polímero mais indicado (CHAVES, 2002).

Verificado que há controvérsias na literatura quanto à eficiência dos polímeros em escoamento laminar. Porém no escoamento laminar pulsátil (intermitente), já existem trabalhos apresentando o fenômeno da redução de arrasto nesta condição (DRIELS, 1976).

2.13 RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LIQUIDO NO BOMBEAMENTO

Segundo GRAF et al. (1970), o movimento de uma mistura de solidos-liquido através de uma tubulação as seguintes variáveis são importantes:

f (V, D,
$$\mathcal{E}$$
, ρ , ν , g, ρ_s , d, d₉₀/d₅₀, C) = 0 (2.101)

Em que: **V** é a velocidade do fluxo; **D** é o diâmetro da tubulação; **E** é a rugosidade da tubulação; **p** e **p**_s são a densidade da água e das particulas respectivamente; **v** é a viscosidade cinemática da água (fluido carreante); **g** é a constante gravitacional; **d** é o diâmetro médio das particulas (corresponde a 50% da massa das particulas) ; d_{90}/d_{50} é um parâmetro de não uniformidade do tamanho das particulas e **C** é a concentração volumética ou mássica das particulas.

Agrupando a Equação (2.101), considerando a densidade relativa das particulas $(S_s = \frac{\rho_s}{\rho})$, resulta em

$$f\left[\frac{V}{\sqrt{gD}}, (s_{s}-1), \frac{d}{D}, \frac{\varepsilon}{D}, \frac{d_{90}}{d_{50}}, \frac{VD}{v}, C\right] = 0$$
(2.102)

Sendo esperado que o número de Reynolds do fluxo, **(VD)**/v, não é significante no caso de fluxo de misturas sólidos-líquido, então a Equação (2.102) pode ser simplificada em

$$f\left[\frac{V}{\sqrt{gD}}, (s_{s}-1), \frac{d}{D}, \frac{\varepsilon}{D}, \frac{d_{90}}{d_{50}}, C\right] = 0$$
(2.103)

Agora, substituindo na equação geral a velocidade de fluxo, **V**, pela velocidade critica, **Vc**, e rearranjando a Equação (2.113), temos:

$$f\left[\frac{V_c}{\sqrt{gD(s_s-1)}}, \frac{d}{D}, \frac{\varepsilon}{D}, \frac{d_{90}}{d_{50}}, C\right] = 0$$
(2.104)

Observa-se que a equação acima é semelhante as relações propostas por DURAND (1953) e BARR et al. (1968).

Uma vez que esta Equação (2.104) possa ser testada com dados experimentais, então podemos resumir os dados em

$$\frac{V_c}{\sqrt{2gD(s_s-1)}} = f\left[\frac{d}{D}, C\right]$$
(2.105)

Agora podemos plotar os dados segundo a Figura 2.24, e com base em um intervalo dos coeficientes de rugosidade, \mathcal{E}/D , e não uniformidade, $\mathbf{d}_{90}/\mathbf{d}_{50}$, apropriados.

Observa-se que o lado esquerdo da Equação (2.105) é o número de Froude modificado. Adicionalmente nota-se que, generalizando, o diâmetro relativo, **d/D**, pode ser substituido pelo diâmetro das particulas, **d**.

Figura 2.24 - Representação Gráfica da Equação (2.105).

CAPÍTULO 3

MATERIAIS E MÉTODOS

3.1 MATERIAIS

3.1.1 Propriedades das Polpas Estudadas

As amostras de polpa utilizadas nestes ensaios de loop de bombeamento, segundo a Tabela 3.1, representam frações da classificação granulométrica do produto final de bauxita da Usina 1 da Unidade de Beneficiamento da MPSA-Mineração Paragominas S/A.

A Figura 3.1 apresenta as amostras coletadas, separadas em frações via peneiramento manual, e acondicionadas, na forma de polpa com 70% de sólidos em peso, em 4 bombonas de 200 litros cada, totalizando cerca de 390 kg de polpa.

Denominação		# Tyler (mm)	Retido (g)	Retido (%)	
Composta	Grossos	48 (0,297)	82,00	2,35	
		65 (0,210)	183,00	5,25	
		100 (0,149)	365,00	10,46	
		150 (0,105)	453,00	12,99	
	Finos	200 (0,074)	588,00	16,86	
		270 (0,053)	470,00	13,47	
		325 (0,044)	394,00	11,30	
		400 (0,037)	171,00	4,90	
		-400 (-0,037)	782,00	22,42	

Tabela 3.1 - Classificação granulométrica das amostras ensaiadas.

a) Grossos

Polpa compreendida pelas frações entre 150 # (0,105 mm) = 48 # (0,297 mm), sendo 12,99% retido em 150 # (0,105 mm); 10,46% retido em 100 # (0,149 mm); 5,25% retido em 65 # (0,210 mm) = 2,35% retido em 48 # (0,297 mm).

b) Finos

Polpa compreendida pelas frações de -400 # (0,037 mm) a - 150 # (0,105 mm), sendo 22,42% passante em 400 # (0,037 mm); 4,90% retido em 400 # (0,037 mm); 11,30% retido em 325 # (0,044 mm); 13,47% retido em 270 # (0,053 mm) e 16,86% retido em 200 # (0,074 mm).

c) Composta

Polpa formada pela composição das frações de grossos e finos, com granulometria compreendiada entre -400 # (0,037 mm) e 48 # (0,297 mm), nas seguintes porporções em peso seco: grossos (31,05%) e finos (68,95%).

Figura 3.1 – Amostras de polpa em bombonas de 200 litros.

3.1.2 Unidade Experimental para o Bombeamento de Polpas Minerais

Foi utilizada a unidade experimental de loop test do Laboratório de Fenômenos de Transporte e Química de Interfaces Aplicados à Engenharia Mineral (LFQI), pertencente ao PMI-Departamento de Engenharia de Minas e de Petróleo (PMI) da Escola Politécnica da Universidade de São Paulo (EPUSP).

Esta unidade foi construida em 2013 para estudos de fenômenos de transporte de polpas minerais, bem como para bombeamento e escalonamento de dados experimentais para diâmetros industriais, apresentando as seguintes propriedades:

- Tubulação de 2" em aço inox, sendo 2,0 m em acrílico transparente;
- 4 tomadas de pressão, nas quais duas são de transdutores de pressão (0~7kgf/cm²) e duas são de manômetros digitais de polpa (0~4 kgf/cm²);
- Medidor magnético de vazão/velocidade de polpa de minérios;
- Válvulas diafragma para polpa de minérios;
- Válvulas de drenagem da tubulação;
- Bomba centrífuga para polpa;
- Inversor de frequência;
- Tanque de descarga de polpa com calha distribuidora de seções transversais;
- Caixa de polpa (120 litros) em acrílico transparente com impulsor mecânico;
- Sistema de aquisição de dados.

A Figura 3.2 mostra o esboço da unidade de loop de bombeamento, com os seus componentes descritos na Tabela 3.2, enquanto que as fotos das Figuras 3.3 apresentam esta unidade e os seguintes aparatos em destaque: caixa de polpa com o agitador mecânico e o sistema das calhas distribuidoras com o tanque de descarga.

Figura 3.2 – Esboço da unidade de loop de bombeamento do LFQI/USP.

Tabela 3.2 – Componentes	da unidad	le de loop de	bombeamento.
	aa amaaa	10 do 100p do	somsounomo.

ltem	Descrição
01	Caixa de polpa
02	Bomba centrifuga
03	Motor elétrico da bomba com inversor de frequência
04	Agitador de polpa com inversor de frequência
05	Tubulação e conexões
06	Trecho de tubulação em acrílico transparente
07	Manômetros digitais de polpa
08	Transdutores de pressão
09	Válvula controladora de vazão
10	Válvulas diafragma para polpa
11	Tanque de descarga de polpa
12	Calhas distribuidoras de polpa
13	Medidor de vazão magnético
14	Válvulas de drenagem da tubulação
15	Sistema de aquisição de dados
16	Inversor de frequência do motor do agitador de polpa

Figura 3.3 – Unidade de loop e sistemas de caixa de polpa e calhas distribuidoras.

Visando a separação das amostras, de maneira a determinar o gradiente de fluxo de sólidos ao longo da seção transversal da tubulação foi construída uma calha distribuidora, feita de acrílico (Figura 3.4), a qual divide a área do tubo (diâmetro interno nominal de 50,80 mm) em 3 setores: 1, 2 e 3, cujas áreas são respectivamente 7,57 cm²; 5,13 cm² e 7,57 cm².

Figura 3.4 – (a) Calha distribuidora; (b) Vista frontal da divisão da seção da tubulação. Fonte: SOUZA PINTO (2012).

Para a coleta das amostras resultantes desta separação, foi construída uma caixa em acrílico, com divisões independentes (Figura 3.5), de maneira a possibilitar a amostragem simultânea nos três setores individuais da calha distribuidora. Cada compartimento da caixa coletora é de manuseio prático, permitindo a sua pesagem em vazio e com material, determinando assim a massa em cada seção da saída da tubulação.

Figura 3.5 – Caixa de amostragem: (a) Compartimentos acoplados; (b) Compartimentos individualizados. Fonte: SOUZA PINTO (2012).

3.1.3 Unidade Experimental para a Determinação da Esfericidade

Foi utilizado um permeâmetro montado no Laboratório de Fenômenos de Transporte e Química de Interfaces Aplicados à Engenharia Mineral (LFQI), pertencente ao Departamento de Engenharia de Minas e de Petróleo (PMI) da Escola Politécnica da Universidade de São Paulo (EPUSP).

A Figura 3.6 mostra o seu esquema, sendo o mesmo composto por um funil de Buchner, com volume total de 43,06 cm³, com diâmetro interno igual a 48,5 mm e altura de 23,3 mm; um Kitassato de 500 ml, bomba de vácuo de marca FANEM, modelo 089 / CA, um rotâmetro de área variável para ar, da marca DWYER (0-10 Nlpm), e dois manômetros em U, um utilizando água e outro utilizando mercúrio como fluidos manométricos.

Um tampão, com saida em T, foi utilizado para vedar o Kitassato e permitir o acoplamento da linha de vácuo aos manômetros.

Figura 3.6 – Esquema do permeâmetro experimental de determinação da esfericidade das partículas minerais. Fonte: SOUZA PINTO (2012).

A Figura 3.7 mostra uma foto desta unidade montada em uma bancada no laboratório.

Figura 3.7 – Foto da unidade experimental de medição do grau de esfericidade das partículas minerais.

3.2 MÉTODOS

3.2.1 Ensaios de Bombeamento de Polpas Minerais

3.2.1.1 Procedimentos Iniciais

Começou pela calibração da unidade com água, anotando-se em planilha os parâmetros obtidos (6 pares de pontos) visando montar as curvas de Pressão (kgf/cm²) x Vazão (m³/hora) e Pressão (kgf/cm²) x Velocidade média de fluxo (m/s).

Em seguida ocorreu a preparação visando a operação com as polpas, sendo determinadas as massas de sólido e líquido a fim de adequar a concentração da polpa ao volume útil do tanque da mistura (polpa) de alimentação. As concentrações das polpas e demais parâmetros foram determinadas de acordo com as Equações (3.1) a (3.5):

$$C_w = \frac{m_{solidos}}{m_{solidos+água}} \cdot 100\%$$
(3.1)

$$C_w = \frac{d_s(d_p - 1.000)}{d_p(d_s - 1.000)} \cdot 100\%$$
(3.2)

$$d_p = \frac{m_p}{V_p} \tag{3.3}$$

$$\rho_p = \frac{100}{(\frac{C_W}{\rho_s} + \frac{100 - C_W}{\rho_L})}$$
(3.4)

$$C_{\nu} = \frac{C_{w.}d_p}{d_s}.100$$
(3.5)

sendo:

C_w a concentração de sólidos em peso (%);

C_v a concentração em volume (%);

msólidos a massa seca dos sólidos, kg;

mágua a massa de água, kg;

 d_p a massa especifica da polpa (ρ_p), kg/m³;

- m_p a massa da polpa (sólidos + água), kg;
- V_p o volume da polpa, m³;
- d_s a massa especifica dos sólidos (ρ_s), via picnometria, g/cm³ ou kg/m³;
- p_{L} a massa especifica do liquido (água = 1.000 kg/m³ ou 1,000 g/cm³).

A Tabela 3.3 apresenta as propriedades das 3 polpas ensaiadas (grossos, finos e composta), nas seguintes concentrações de sólidos em peso: 60%; 50%; 40% e 30%.

Então, à medida que vai sendo feito o preenchimento do tanque de polpa (120 litros) o agitador é acionado, controlando a sua velocidade, via o variador de velocidade, e também procede-se ao controle da altura da sua imersão na caixa de polpa.

Em seguida, após a estabilização do nível e a certificação da inexistência de deposição de partículas na caixa de polpa dá-se a partida da bomba de polpa.

Os parâmetros primeiros a procurar a sua estabilização são frequência (Hz) do motor e velocidade do fluxo (m/s), em seguida procura-se também certificar da vazão da polpa (m³/h), via o rotâmetro da unidade de *loop* de bombeamento, visando assegurar a estabilidade das pressões (kgf/cm²) nos 2 manômetros digitais de polpa.

Finalmente faz-se o registro dos parâmetros na planilha de dados, anotando-se também a rotação do conjunto motor/bomba através de um tacômetro a laser.

Deste modo, são tomados espaçadamente, após a estabilização, cerca de 10 conjuntos de dados de maneira a permitir plotar os gráficos $\Delta P/L$ (KPa/m) x Velocidade do Fluxo (m/s) e $\Delta P/L$ (KPa/m) x Vazão do Fluxo (m³/h).

Polpa	Diâmetro médio de Sauter, µm	% sólidos em massa	% sólidos em volume	Diâmetro interno da tubulação, mm	Densidade da polpa (kg/m ³)	рН
Gossos (+48# a +150#)	155,885	30 40 50 60	15,06 21,70 28,74 37,89	50,80	1.240 1.340 1.420 1.560	7,30 7,20 7,10 7,00
Finos (-150# a - 400#)	8,103	30 40 50 60	15,15 22,00 29,38 38,28	50,80	1.212 1.320 1.410 1.531	7,50 7,40 7,30 7,00
Composta (+48# a -400#)	9,847	30 40 50 60	15,09 21,89 29,18 38,24	50,80	1.218 1.325 1.413 1.543	7,60 7,40 7,30 7,10

Tabela 3.3 – Propriedades das polpas ensaiadas

3.2.1.2 – Incerteza nos experimentos de bombeamento

Esta verificação foi feita nos ensaios de bombeamento, na etapa de calibração da unidade de loop teste com água, na determinação da perda de carga/metro de tubulação (J), segundo a fórmula de Darcy-Weisbach ou Universal:

$$J = \frac{h_f}{L} = \frac{8fQ^2}{\pi^2 g D^5}$$
(3.6)

sendo:

- J = Perda de carga continua por metro de tubulação;
- h_f = Perda de carga continua, m;
- L = Comprimento da tubulação, m;
- Q = Vazão do fluxo, m³/s;
- D = Diâmetro da tubulação, m;
- g = Aceleração da gravidade, m/s²;
- f = Fator de atrito, obtido no Diagrama de Moody, função do Número de Reynolds e da rugosidade relativa da tubulação (ε/D).

A incerteza dos dados usualmente é definida como a faixa dentro da qual está o valor verdadeiro com 95% de confiança (WHITE, 2011). As incertezas nos experimentos são divididas em duas causas: (a) erro sistemático devido ao instrumento ou seu ambiente e (b) erro aleatório devido à variação em leituras repetidas.

O erro sistemático foi minimizado através da calibração da unidade de loop de bombeamento com água, conforme demonstrado no ítem especifico.

O erro aleatório foi estimado estatisticamente, utilizando-se da seguinte metodologia:

Supondo que um resultado P desejado dependa de uma única variável experimental x. Se x tiver uma incerteza δx, então a incerteza δP pode ser estimada por meio do seguinte cálculo:

$$\delta P \approx \frac{\partial P}{\partial x} \delta x \tag{3.7}$$

Segundo KLINE e MCCLINTOCK (1953), no caso de múltiplas variáveis, P = $P(x_1, x_2, x_3, x_N)$, a incerteza global δP é calculada como uma estimativa baseada na raiz quadrada média:

$$\delta P = \left[\left(\frac{\delta P}{\partial x_1} \delta x_1 \right)^2 + \left(\frac{\delta P}{\partial x_2} \delta x_2 \right)^2 + \dots + \left(\frac{\delta P}{\partial x_N} \delta x_N \right)^2 \right]^{1/2}$$
(3.8)

Observa-se que, em termos estatísticos, este cálculo é muito mais provável do que simplesmente somar linearmente as várias incertezas δx_i , adotando assim a hipótese improvável de que todas as variáveis atingem simultaneamente o máximo erro.

Sendo a grandeza P uma simples expressão da lei da potência das outras variáveis, por exemplo, $P = Const x_1^{n_1} x_2^{n_2} x_3^{n_3}...$, então cada derivada na Equação (3.7) é proporcional a P e ao correspondente expoente da lei da potência e é inversamente proporcional àquela variável.

Deste modo, se $P = Const x_1^{n_1} x_2^{n_2} x_3^{n_3} \dots$, então

$$\frac{\partial P}{\partial x_1} = \frac{n_{1P}}{x_1}; \quad \frac{\partial P}{\partial x_2} = \frac{n_{2P}}{x_2}; \quad \frac{\partial P}{\partial x_3} = \frac{n_{3P}}{x_3}, \dots$$
(3.9)

Assim, com base na Equação (3.9), verifica-se que δP é um procedimento direto determinado por:

$$\frac{\delta P}{P} = \left[\left(n_1 \frac{\delta x_1}{x_1} \right)^2 + \left(n_2 \frac{\delta x_2}{x_2} \right)^2 + \left(n_3 \frac{\delta x_3}{x_3} \right)^2 + \cdots \right]^{1/2}$$
(3.10)

3.2.1.3 Determinação da Velocidade Crítica de Fluxo (Vc)

A determinação experimental da velocidade crítica (V_c) é um processo associado a estabilização da operação com o objetivo do registro dos parâmetros básicos de vazão Q (m³/h), de velocidade de fluxo (m/s) e perdas de carga Δ P/L (kPa/m).

Então após o acionamento do inversor de frequência foi fixada uma rotação da bomba centrifuga de maneira a não haver deposição de sólidos na tubulação no trecho em acrílico transparente. A partir deste ponto, a rotação da bomba foi diminuída até o ponto em que havia a formação de um leito móvel na base da tubulação.

A identificação deste ponto foi feita visualmente, sendo de fácil determinação para a polpa da fração de grossos (+48# a +150#), mas no caso da polpa de finos (-150# a -400#) e polpa composta (+48# a -400#) esta determinação visual não foi possível, devido a coloração da polpa (vermelha) e sua aparência de totalmente homogênea.

Deste modo a identificação da V_c para estas polpas foi via gráfico de perda de carga (kPa/m) x Velocidade da Polpa (m/s).

No caso da fração de grossos, após a identificação do ponto da velocidade crítica, a rotação da bomba é medida diretamente no eixo da mesma através de um tacômetro a laser, enquanto que a vazão volumétrica Q (m³/h) é medida diretamente via rotâmetro.

3.2.1.4 Determinação da Perda de Carga

A medida da perda de carga por metro de tubulação horizontal ($\Delta P/L$) utilizando-se os manômetros digitais, mediu-se em cada manômetro os pontos de mínimo e máximo, determinou-se a média. A perda de carga foi determinada pela diferença das médias entre o 1º manômetro e o 2º manômetro.

A perda de carga do escoamento bifásico foi determinada através da Equação de Bernoulli, segundo a Equação (3.11).

$$\frac{P_1}{\gamma} + \frac{v_1^2}{2g} + z_1 + H = \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2 + j_{2-1}$$
(3.11)

sendo:

P a pressão, em N/m²;

- γ o peso especifico, em N/m³;
- v a velocidade do fluido, em m/s;
- z o nível do transporte, em m;
- H a carga da bomba, em m;
- j₂₋₁ a perda de carga entre os trechos 1-2, em m.

Rearranjando a Equação (3.11), considerando que entre os pontos 1 e 2, não há trabalho de eixo, não há variação de seção na tubulação e estes pontos encontram-se no mesmo nível, resulta na Equação (3.12), que é a perda de carga por metro de tubulação horizontal.

$$\frac{\Delta P_{2-1}}{\gamma} = j_{2-1} \tag{3.12}$$

3.2.1.5 Determinação Experimental do Gradiente de Fluxo dos Sólidos

O perfil do gradiente de fluxo de sólidos ao longo da seção transversal da tubulação é um parâmetro importante que auxilia na caracterização do fluxo (heterogêneo ou pseudo-homogêneo), bem como permite a análise de efeitos de abrasão e desgaste da tubulação.

A determinação do perfil de concentração foi realizada através da calha distribuidora, localizada na descarga da tubulação, a qual divide a seção do tubo em 3 setores (Base, Meio e Topo).

Uma caixa coletora, que se ajusta às saídas individuais da calha, foi utilizada para a determinação da concentração mássica em cada setor.

No interior desta caixa coletora foram instalados 3 recipientes removíveis, individualizados para cada setor.

As coletas foram simultâneas, nas polpas ensaiadas (grossos, finos e composta) nas concentrações mássicas de 60%, nas velocidades de 20% acima da velocidade crítica.

As distâncias (d₁; d₂; d₃), indicadas na Figura 3.8, relacionam o centro de cada setor ao diâmetro do tubo (D) segundo as relações de 0,2D; 0,5D e 0,8D, representando os 3 setores (Base, Meio e Topo).

Figura 3.8 – Representação dos setores com base nas relações com o diâmetro do tubo (D). Fonte: SOUZA PINTO (2012).

O perfil de concentração de sólidos foi determinado com base na concentração de cada setor relacionado com a área do mesmo, conforme demonstrado na Equação (3.13).

$$P_{CS} = \frac{\frac{C_{Wi}}{A_i}}{\sum_{i=1-3}^{n} \frac{C_{Wi}}{A_i}} \cdot 100$$
(3.13)

sendo:

P_{cs} o perfil de concentração de sólidos, %;

C_{wi} a concentração mássica, % (massa seca/massa polpa);

 A_i a área de cada setor (i = 1; 2; 3).

3.2.1.6 Levantamento da Curva da Perda de Carga por Metro de Tubo Horizontal em Função da Velocidade de Fluxo da Polpa

As curvas de perda de carga por metro de tubo x velocidade de fluxo da polpa foram originadas nos conjuntos de dados do ensaio, com pontos acima e abaixo da velocidade critica (V_c), onde havia a formação de um leito na base da tubulação, ocasionando acúmulo de partículas na base da tubulação.

Todos os pontos foram determinados em função da rotação da bomba em que ocorre a formação de um leito móvel na base da tubulação, variando a velocidade da bomba por um inversor de frequência em intervalos determinados, tanto acima como abaixo da rotação em que o fluxo atende Vc. Para cada rotação utilizada, registrou-se a perda de carga e a correspondente velocidade do fluxo em cada condição.

3.2.2 Determinação da Esfericidade das Partículas Minerais

O permeâmetro descrito na Seção 3.1.3 é preparado para o início dos ensaios, onde faz-se primeiramente a calibração dos manômetros de água e de mercúrio, sendo os parâmetros registrados na folha de dados.

Em seguida o funil de Buchner foi preenchido com as 3 amostras minerais utilizadas.

Com o leito empacotado, o excesso de partículas foi retirado através de uma haste de madeira.

Com o acionamento da bomba de vácuo, o ar é forçado a percolar o leito poroso, tendo sua vazão monitorada através do rotâmetro de área variável,

controlando-se a vazão de ar no rotâmetro e a perda de carga no manômetro em U, utilizando-se água ou mercúrio como fluido manométrico.

Os seguintes parâmetros de ar (litros/min) e fluidos foram empregados nos ensaios:

- a) Fração grossos (+150# a + 48#): 1,0 a 5,0 L/min e água como fluido manométrico;
- b) Fração finos (-150# a -400#): 1,0 a 2,5 L/min e mercúrio como fluido manométrico;
- c) Fração composta (-400# a +48#): 1, a 2,5 L/min e mercúrio como fluido manométrico.

A constante de permeabilidade do leito (K), que atende ao regime laminar, foi determinada através da Lei de Darcy, de acordo com a Equação (3.14).

$$-\frac{\Delta P}{L} = \frac{\mu}{K} \cdot \frac{Q}{A}$$
(3.14)

sendo:

 ΔP a perda de carga através do meio poroso; Q a vazão de ar; μ a viscosidade dinâmica do ar a 20° C; K a constante de permeabilidade.

A porosidade do meio (ε), definida como a razão entre o volume de espaços vazios pelo volume total do leito (vazio e sólidos), pode ser definida segundo a Equação (3.15).

$$\varepsilon = \frac{V_{vazios}}{V_{leito}}$$
(3.15)

sendo:

ε a porosidade do meio;

Vvazios os espaços entre os grãos;

V_{leito} o volume total dos vazios e grãos.

A partir das características do sistema, tais como, porosidade, diâmetro das partículas, perda de carga por altura de leito, viscosidade do fluido e a velocidade média do fluido, o modelo de Kozeny-Carman apresenta a esfericidade de acordo com a equação 3.16, adotando o regime laminar (McCABE, 1985).
$$-\frac{\Delta P}{L} \cdot \frac{(D_p \cdot \Psi)^2}{\overline{V}_0 \cdot \mu} \cdot \frac{\varepsilon^2}{(1-\varepsilon)^2} = 150$$
(3.16)

sendo:

ψ a esfericidade das partículas;

D_p o diâmetro médio volumétrico;

V₀ a velocidade média do fluido.

Rearranjando as Equações (3.14) e (3.16), a constante de permeabilidade do leito (K) é determinada conforme a Equação (3.17):

$$K = \frac{(D_p \Psi)^2 \varepsilon^3}{150.(1-\varepsilon)^2}$$
(3.17)

3.2.3 Análise Granulométrica

3.2.3.1 Técnica do Peneiramento a Úmido

Realizada no Laboratório Físico-Químico da Mineração Paragominas S/A – MPSA, através de um conjunto suspenso de malhas, em escala Tyler: 48#; 65#; 100#; 150#; 200#; 270#; 325#; 400# e -400#.

Cada fração é seca em estufas a 110° C e pesada em balança eletrônica de maneira a obter os percentuais retidos em cada malha.

3.2.3.2 Técnica da Difração a Laser

Realizada no Laboratório de Caracterização Tecnológica – LCT, Departamento de Engenharia de Minas e de Petróleo – Escola Politécnica da USP, através da técnica do espalhamento de luz laser de baixo ângulo, em equipamento Malvern 2000, em dispersão a úmido (água deionizada) em amostrador Hydro 2000MU (A).

3.2.4 Microscopia Eletrônica de Varredura (MEV)

Realizada no Laboratório de Microscopia Eletrônica de Varredura (MEV) da CPRM-Belém.

As imagens de microscopia eletrônica de varredura foram obtidas no microscópio eletrônico de varredura EVO LS-15 da ZEISS, por meio de dois

detectores: elétrons secundários (SE) e elétrons retroespalhados (BSB); ambos da Oxford Instruments.

Para o detector de elétron secundário, tem-se uma avaliação textural da amostra, ao passo que para o detector de elétrons retroespalhados, há uma avaliação da composição química da amostra.

3.2.5 Ensaios em Fluorescência de Raios X - FRX

Realizados no Laboratório Físico-Químico da Mineração Paragominas S/A – MPSA, em espectrômetro marca PANalytical, modelo Axios max, com pastilhamento fundido a 1.000 °C em máquinas de fusão de marca CLAISSE, modelo The Ox Electronic Fusion.

3.2.6 Avaliações Reológicas

Realizadas no Laboratório Físico-Químico da Mineração Paragominas S/A – MPSA, em um viscosímetro da marca HAAKE, modelo VT 550, com sensor de cilindros coaxiais SV1.

3.2.6.1 Metodologia de Execução dos Ensaios

Para a obtenção dos dados experimentais utilizou-se a metodologia PSI (empresa projetista e consultora da operação do mineroduto de Paragominas), a qual consiste basicamente na elaboração de uma rampa padrão para os ensaios, de maneira a minimizar a decantação da polpa no sistema de cilindros coaxiais. Esta metodologia visa a obtenção dos pontos em velocidade de rotação correspondente inicialmente a taxa de 550 s⁻¹, promovendo uma varredura até 40 s⁻¹, em intervalos de 10 s, adquirindo-se 100 pontos em cada intervalo.

Todos os ensaios e a subsequente caraterização aos modelos matemáticos da literatura foram em triplicata, sendo escolhidos os modelos de melhor ajuste ao coeficiente de determinação (R²).

3.2.6.2 Calibração do Equipamento

Para assegurar a confiabilidade do equipamento foi realizado um ajuste para um fluido newtoniano com o óleo de calibração OP 400, nas mesmas condições da polpa de bauxita, ilustrada pela Figura 3.9.

Figura 3.9 – Curva de calibração do viscosímetro.

O óleo de calibração ajustou-se perfeitamente ao modelo de fluido newtoniano, atestando a confiabilidade do equipamento.

3.2.6.3 Metodologia da Incerteza dos Ensaios Reológicos

Visando a estimativa dos desvios experimentais dos ensaios no viscosímetro Haake VT 550, foram utilizados dados específicos do sensor SV1, conforme demonstrado no Apêndice F. O desvio foi calculado para as tensões médias das rampas de 550 s-1 até 40 s⁻¹, em intervalos de 10 s, segundo a metodologia empregada nos ensaios.

As Figuras 3.10 e 3.11 e Tabela 3.4 mostram respectivamente o aparelho e as geometrias e dimensões do sensor e copo do viscosímetro.

Figura 3.10 – Geometria do aparelho. Fonte: HAAKE Manual, 2006

Figura 3.11 – Geometrias do copo e sensor. Fonte: HAAKE Manual, 2006

Tabela 3.4 - Dimensões do sensor e copo do viscosímetro Haake - VT 550.

R _i (raio do rotor) = 10,1 mm	Abertura do gap = $R_a - R_i = 1,45 \text{ mm}$
L (comprimento do rotor) = 61,4 mm	Volume de amostragem = 12,0 cm ³
R _a (raio do copo) = 11,55 mm	Fator de torque (f) = 253,0 Pa/Ncm
$\delta = R_a/R_i$ (Razão entre raios) = 1,14	Fator de rotação (M) = 0,890 min/s

Fonte: HAAKE Manual (2006).

Visando a correção dos desvios, seguindo procedimento adotado por Machado (2002), a verificação da razão entre os raios do copo e do rotor e as correções do torque e rotação, são determinadas segundo as Equações (3.18) a (3.20), respectivamente:

$$\left(\frac{R_a}{R_i} \le 1, 10\right) \tag{3.18}$$

$$f = \frac{0.01}{2.\pi . L. R_i^2} \tag{3.19}$$

$$M = \frac{\pi R_a^2}{15 (R_a^2 - R_i^2)}$$
(3.20)

Em seguida, aplicando estas correções na determinação da viscosidade, temos a Equação (3.21), dada por:

$$\eta = \frac{\tau}{\dot{y}} = \frac{f_{M_d}}{M.n} = \left(\frac{f}{M}\right) \cdot \left(\frac{M_d}{n}\right)$$
(3.21)

sendo,

η a viscosidade dinâmica aparente (pseudoplástica), Pa.s;

 τ a tensão de cisalhamento, Pa;

 $\dot{\mathbf{Y}}$ a taxa de cisalhamento, s⁻¹;

f o fator de correção da tensão, Pa/Ncm;

M_d o valor do torque medido no equipamento, N.cm;

M o fator de correção da taxa de cisalhamento, min.s⁻¹;

n o valor a taxa medida no equipamento; min-1.

Segundo o MANUAL HAAKE (2006), os principais critérios de qualidade aplicados ao sistema de medição com o cilindro coaxial referem-se basicamente a:

- a) Razão entre os raios, segundo norma DIN 53019 e padrões internacionais, $\delta = \text{Ra/Ri}$, no seguinte intervalo: 1,00 $\leq \delta \leq 1,10$;
- b) Efeitos de borda, relacionados as bordas finais do rotor, sendo minimizados através dos espaços na base e topo do rotor.

3.2.7 Ensaios de Picnometria

Como ferramenta auxilar a preparação das polpas aos ensaios de loop de bombeamento, foram realizados ensaios em picnômetro (sólidos e água), visando a determinação da densidade real ou relativa dos grãos constituintes das 3 polpas ensaidas.

Estes ensaios foram realizados no Laboratório de Fenômenos de Transporte e Química de Interfaces Aplicados à Engenharia Mineral (LFQI), pertencente ao Departamento de Engenharia de Minas e Petróleo (PMI) da Escola Politécnica da Universidade de São Paulo (EPUSP).

Os ensaios foram realizados em triplicata, seguindo a norma ABNT NBR 6508/84.

3.3 METODOLOGIAS DE RESOLUÇÃO DOS FATORES DE ATRITO

3.3.1 Introdução

A metodologia visando a resolução dos fatores de atrito é dependente da caracterização reológica, ou seja, após os ensaios (em triplicata) e a subsequente caracterização aos modelos matemáticos da literatura e a escolha dos modelos de melhor ajuste ao coeficiente de determinação (R²), prossegue-se na metodologia de solução dos fatores de atrito conforme bibliografia adequada as condições do trabalho.

Os fluidos encontrados foram caracterizados aos **modelos de Ostwald-de Waele (lei da potência) e plástico de Bingham,** o que justifica a metodologia escolhida na determinação dos fatores de atrito.

3.3.2 Metodologia de solução da equação do fator de atrito segundo o modelo de lei da potência

No Capítulo 2 – Revisão da Literatura, İtem 2.11.2.2 e sub-ítem **c.1-Fluidos de lei da potência** encontra-se a descrição desta metodologia.

A resolução envolveu a utilização de planilhas em Excel na determinação do fator de atrito em função do número de Reynolds generalizado. No caso de escoamento laminar o fator de atrito (f) foi determinado pela equação de Fanning e na condição de escoamento turbulento o fator de atrito (f) foi via a correlação desenvolvida por DODGE e METZNER (1959), calculado via metodologia por iterações em Excel.

3.3.3 Metodologia de solução da equação do fator de atrito segundo o modelo Bingham

No Capítulo 2 – Revisão da Literatura, Ítem 2.11.2.2 e sub-ítem **c.2-Fluidos Plásticos de Bingham** encontra-se a descrição desta metodologia.

A resolução envolveu a utilização de planilhas em Excel na determinação do fator de atrito em função do número de Reynolds. No caso de escoamento laminar, o fator de atrito (f) foi determinado pela equação de Buckingham Reiner (DARBY e MELSON, 1981). Na condição de escoamento turbulento a solução do fator de atrito é uma composição do fator de atrito laminar (f_L) acrescido do fator de atrito turbulento (f_T), sendo este determinado via uma equação empírica desenvolvida por DARBY e MELSON (1981), calculada por iterações em Excel.

3.4 ESTUDOS ACADÊMICOS DE SUPORTE AOS TRABALHOS

3.4.1 Dissertação de mestrado

REIS (2015), como objetivo geral, avaliou a influência de diferentes frações granulométricas (-100# a 150#; -150# a 200#; -200# a 270# e -270# a 325#) na reologia da polpa de bauxita que escoa através do mineroduto da Mineração Bauxita S/A (MPSA); e como objetivos específicos realizou os seguintes trabalhos:

- Classificação granulométrica da polpa de bauxita em frações com diferentes diâmetros médios de partícula;
- Determinação da composição mineralógica;
- Determinação da concentração ideal de defloculante a ser adicionada nas polpas de diferentes granulometrias de bauxita formuladas a 50% de sólidos;
- Realização de ensaios de histerese para avaliar o comportamento reológico de polpas de bauxita formuladas com diferentes frações granulométricas.

3.4.2 Trabalho de conclusão de curso - TCC

RODRIGUES (2015), como objetivo geral, avaliou a influência do poliacrilato de sódio como aditivo em suspensões, a 50% de sólidos de bauxita em diferentes granulometrias (retida em 150# e passante de 400#); e como objetivos específicos realizou os seguintes trabalhos:

- Avaliação da influência da operação de peneiramento na composição química da bauxita, através da técnica instrumental conhecida por DRX;
- Avaliação da eficiência do poliacrilato de sódio como aditivo dispersante de uma polpa de bauxita composta por partículas mais grossas bem como de polpa constituída de partículas finas.

3.4.3 Dissertação de mestrado do autor desta tese

Autor, BRUM (2011), como objetivo real propôs uma revisão da especificação granulométrica de uma polpa de bauxita da MPSA, em face as dificuldades operacionais verificadas em escala industrial da bauxita; e como objetivos específicos os seguintes trabalhos foram realizados:

- Determinação experimental de modelos reológicos de polpas de bauxita, através de análises para determinação dos parâmetros como a viscosidade, a tensão de cisalhamento e as propriedades de tixotropia e reopexia;
- Modelamento matemático dos fatores atrito de três polpas de bauxita de diferentes granulometrias, segundo o modelo de Herschel-Bulkley;
- Comparação dos fatores de atrito modelados aos fatores de atrito da bibliografia calculados pelas correlações de Dodge e Metzner (1959).
- 3.5 RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LIQUIDO NO BOMBEAMENTO

3.5.1 Metodologia do trabalho

O objetivo é verificar a aplicação da comprovação de GRAF et al. (1970), conforme descrito no Ítem 2.14, nas polpas estudadas neste trabalho (Grossos, Finos e Composta).

A metodologia é o tabelamento dos parâmetros e a elaboração dos gráficos conforme procedimentos destes autores.

Graficamente os dados serão representados segundo a Figura 2.23, onde no gráfico (a) procura-se verificar se com o aumento da concentração de sólidos haverá um acréscimo do numero de Froude. Em seguida, no gráfico (b) procura-se também verificar se com o aumento do diâmetro médio dos grãos haverá também o acréscimo do numero de Froude modificado.

O número de Froude é adimensional que relaciona o efeito de forças de inércia e forças de gravidade atuantes sobre um fluido em movimento.

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

4.1 ENSAIOS REOLÓGICOS EXPERIMENTAIS

4.1.1Caracterização reológica das frações ensaiadas

Nos Anexos C/D/E encontram-se os resultados experimentais dos ensaios de reologia das frações de grossos, finos e composta.

Observa-se que o pH natural das amostras situou-se entre 7,00 e 7,60, não sendo objeto deste estudo a verificação da influência deste indicador nas propriedades reológicas destas amostras.

Na diluição da polpa utilizou-se água de trabalho no laboratório com pH médio de 7,56.

a) Fração de grossos:

A Tabela 4.1 apresenta o resumo dos ensaios mostrando ajuste ao modelo de lei da potência (power law) nas concentrações mássicas estudadas.

Frações (# Tyler)	Conc.	Massa	~U	Madala Baalágiaa	Parâr	netros	Coeficiente de	
	(%)	(kg/m ³)			к	n	(R ²)	
48# a 150#	60	1.560	7,00		2,5221	0,4113	0,64	
	50	1.420	7,10	Fluido de Lei da	0,3736	0,4422	0,43	
	40	1.340	7,20	Potência	0,1711	0,5426	0,78	
	30	1.240	7,30		0,0400	0,8082	0,74	

Tabela 4.1 - Caraterização Reológica - Polpa de Grossos.

Observa-se um elevado coeficiente de consistência (K) na concentração mássica de 60% evidenciado pela elevação da densidade da polpa, significando um maior empacotamento da amostra, representando a diminuição dos vazios e por consequência uma "menor lubrificação dos grãos" levando a maiores atritos e por conequência a maiores tensões de cisalhamento.

Na Figura 4.1 são apresentadas as curvas de fluxo e viscosidade da fração de grossos na concentração mássica de 50%, sugerindo que é a concentração limite

indicada ao bombeamento de polpa de bauixta, pois a partir desta concentração o coeficiente de consistência (K) se eleva consideravelmente.

Figura 4.1 – Curvas de fluxo e viscosidade – 50% sólidos – Polpa Grossos – Modelo Lei da Potência, escala logarítmica.

A Figura 4.2 apresenta uma comparação da evolução das curvas de viscosidade e de fluxo, segundo as concentrações mássicas da polpa de grossos. Observa-se nitidamente o comportamento da viscosidade e tensão de cisalhamento na concentração mássica de 60%, conforme comentado anteriormente.

Figura 4.2 - Curvas de viscosidade e fluxo da polpa de grossos nas concentrações mássicas estudadas.

b) Fração de finos:

A Tabela 4.2 mostra o resumo dos ensaios mostrando ajuste ao modelo de Bingham nas concentrações mássicas estudadas.

Frações (# Tyler)	Conc. Mássica	Massa Específica	nH	Modelo Reológico	Parân	netros	Coeficiente de Determinação (R ²)	
	(%)	(kg/m ³)	p	Modele i teologice	τ_0	η		
-150 # a -400 #	60	1.531	7,00	Bingham	70,1040	0,2572	0,94	
	50	1.410	7,30		17,0940	0,0515	0,98	
	40	1.320	7,40	Dirigham	5,9678	0,0256	1,00	
	30	1.212	7,50		1,4168	0,0156	0,99	

Tabela 4.2 - Caraterização Reológica - Polpa de Finos.

Observa-se na concentração mássica de 60% uma sensível elevação na tensão limite de escoamento, sugerindo também, de modo semelhante à fração de grossos, a elevação do empacotamento da amostra nesta concentração.

Na Figura 4.3 são apresentadas as curvas de fluxo e viscosidade da fração de finos na concentração mássica de 50%, sugerindo também que é a concentração limite pois a partir desta concentração o coeficiente de consistência (K) se eleva considerávelmente.

Figura 4.3 - Curvas de fluxo e viscosidade – 50% sólidos – Polpa Finos – Modelo Bingham.

A Figura 4.4 apresenta uma comparação da evolução das curvas de viscosidade e de fluxo, segundo as concentrações mássicas da polpa de finos.

Observa-se também nitidamente o comportamento da viscosidade e tensão de cisalhamento na concentração mássica de 60%, conforme comentado anteriormente.

Figura 4.4 - Curvas de viscosidade e fluxo da polpa de finos nas concentrações mássicas estudadas.

c) Fração composta:

A Tabela 4.3 mostra o resumo dos ensaios mostrando ajuste ao modelo de Bingham nas concentrações mássicas estudadas.

	······································									
Frações (#Tyler)	Conc. Mássica	Massa Específica	nН	Modelo Reológico	Parâmetros				Coeficiente de Determinação	
(%)	(%)	(kg/m ³)	pri		τ_0	η	к	n	(R ²)	
48 # a -400 #	60	1.543	7,10	Bingham .	17,7380	0,0510			0,98	
	50	1.413	7,30		1,9404	0,0249			1,00	
	40	1.325	7,40	- Fluido de Potência			0,1414	0,6380	0,99	
	30	1.218	7,60				0,0117	0,9774	0,99	

Tabela 4.3 - Caraterização Reológica - Polpa Composta

Observa-se na fração composta uma diferença de caracterização nas concentrações mássicas de 30% e 40%, apresentando ajustes em alta correlação ao modelo de lei da potência (power law), enquanto que nas demais concentrações evidencia o ajuste também em alta correlação ao modelo Bingham. Este comportamento nas concentrações de 30% e 40% sugere uma maior influência das partículas da fração de grossos (31,05% da massa), com maior espaço entre as partículas.

Observa-se na concentração mássica de 60% uma sensível elevação na tensão limite de escoamento, sugerindo também, de modo semelhante a fração de grossos, a elevação do empacotamento da amostra nesta concentração.

Verificado que os ajustes realizados segundo o modelo de lei da potência (power law) mostram índice de comportamento n<1, confirmando a polpa mineral como um fluxo pseudoplástico.

Na Figura 4.5 são apresentadas as curvas de fluxo e viscosidade da fração composta na concentração mássica de 50%, sugerindo também que é a concentração limite pois a partir desta concentração o coeficiente de consistência (K) se eleva considerávelmente.

96

Figura 4.5 - Curvas de fluxo e viscosidade – 50% sólidos – Polpa Composta – Modelo Bingham.

A Figura 4.6 apresenta uma comparação da evolução das curvas de viscosidade e de fluxo, segundo as concentrações mássicas da polpa composta. Diferentemente do observado nas frações de grossos e finos, além da verificação do comportamento da viscosidade e tensão de cisalhamento na concentração mássica de 60%, conforme comentado anteriormente, há também uma distinção clara nas concentrações mássicas de 50%, 40% e 30%.

Figura 4.6 – Curvas de viscosidade e fluxo da polpa composta nas concentrações mássicas estudadas.

4.1.2 Verificação do ajuste do equipamento quanto à incerteza dos ensaios

A Tabela 4.4 apresenta um resumo estatístico (média aritmética e desvio padrão) dos desvios dos dados experimentais dos ensaios reológicos nas frações estudadas.

	Gros	SSOS	Fir	IOS	Composta		
% Sólidos	Media (%)	Desvio	Media (%)	Desvio	Media (%)	Desvio	
60	0,9563	0,0020	0,9531	0,0001	0,9546	0,0008	
50	0,9988	0,1372	0,9548	0,0011	0,9930	0,0373	
40	1,1145	0,1157	0,9642	0,0074	1,0949	0,1325	
30	1,2217	0,2761	1,0360	0,0820	1,1134	0,1348	

Tabela 4.4 - Estatística da incerteza nos experimentos.

Verifica-se que as médias e respectivos desvios padrão das incertezas acompanham o incremento dos percentuais de sólidos nas polpas ensaiadas, com acréscimos maiores nas frações de grossos e composta, evidenciando que a participação da granulometria mais grosseira é determinante para esta constatação.

Nas Figuras 4.7, 4.8 e 4.9 são apresentados os gráficos das incertezas para as polpas (grossos, finos e composta), na concentração mássica de 50%, ajustadas aos modelos de lei da potência (power law) e Bingham.

Figura 4.7 – Gráfico de incertezas polpa grossos – 50% sólidos.

Figura 4.8 - Gráfico de incertezas polpa finos - 50% sólidos.

Figura 4.9 - Gráfico de incertezas polpa composta – 50% sólidos.

4.2 ENSAIOS EXPERIMENTAIS DE LOOP DE BOMBEAMENTO

4.2.1 Introdução

Os resultados e análises são apresentados neste capítulo e APÊNDICE A. Os ensaios foram realizados em circuito fechado (loop), utilizando-se a água pura visando calibrar o circuito e em seguida fazer os ajustes das concentrações mássicas dos ensaios.

A Tabela 4.5 apresenta o resumo dos ensaios com as polpas, onde para cada condição operacional determinou-se a velocidade critica de transporte (Vc), a respectiva vazão (m³/hora) e o consequente gradiente de pressão por metro de tubulação horizontal (Δ P/L) em kPa/m.

As Figuras 4.12 a 4.25 mostram em padrão SI, os gráficos convencionais de bombeamento, $\Delta P/L$ (kPa/m) x Velocidade de fluxo (m/s) e $\Delta P/L$ (kPa/m) x Vazão (m³/h), referentes aos ensaios agrupados por fração e respectivas concentrações de sólidos e também gráficos agrupados por concentrações de sólidos e as frações ensaiadas.

4.2.2 Velocidade crítica de fluxo (V_c)

Esta velocidade depende fundamentalmente das seguintes variáveis: granulometria das particulas sólidas; peso especifico dos sólidos; diâmetro da tubulação; concentração de sólidos na mistura; inclinação da tubulação e pH da polpa.

A Tabela 4.5 mostra os parâmetros das 3 polpas ensaiadas, nas concentrações mássicas de 60%; 50%; 40% e 30%, sendo importante ressaltar que: a) A polpa de grossos (d_{sauter} = 155,885 mm), a magnitude de V_C cresceu de 1,10 m/s para 1,22 m/s quando a concentração de sólidos subiu de 30% para 60%. Este comportamento ilustra o efeito da concentração de sólidos sobre V_C: polpas mais concentradas demandam maior velocidade de fluxo para se atingir a condição de leito móvel;

b) De modo semelhante, a polpa de finos (d_{Sauter} = 8,103 mm) e a polpa composta (d_{Sauter} = 9,847 mm), a medida que a concentração de sólidos aumenta, também demandam maiores velocidades para se atingir a condição de leito móvel;

101

 c) Ficou evidenciado que particulas maiores, nas mesmas concentrações de sólidos, demandam maiores velocidades de fluxo devido à necessidade de maior turbulência para serem transportadas em condição de leito móvel do que as mais finas;

d) A polpa composta ($d_{Sauter} = 9,847 \text{ mm}$), formada com a seguinte proporção em peso: grossos = 31,05% e finos = 68,95%, apresentou um comportamento tendendo ao comportamento da polpa de finos ($d_{Sauter} = 8,103 \text{ mm}$) devido à participação destes finos.

Polpa	Diâmetro médio de Sauter, µm	% sólidos em massa	% sólidos em volume	Massa específica da polpa (kg/m ³)	Grau de Esfericidade Ψ	V _c (m/s)	Q (m ³ /h)	∆P/L (kPa/m)
Gossos (48# a 150#)	155,885	30 40 50 60	15,06 21,70 28,74 37,89	1.240 1.340 1.420 1.560	0,5833	1,10 1,12 1,15 1,22	7,85 8,00 8,10 8,75	0,35 0,44 0,54 0,83
Finos (-150# a - 400#)	8,103	30 40 50 60	15,15 22,00 29,38 38,28	1.212 1.320 1.410 1.531	0,6538	0,70 0,73 0,75 0,86	5,20 5,23 5,52 6,11	0,69 2,16 3,82 4,81
Composta (48# a -400#)	9,847	30 40 50 60	15,09 21,89 29,18 38,24	1.218 1.325 1.413 1.543	0,7919	0,91 0,92 1,00 1,15	6,48 6,53 7,09 7,95	0,38 0,54 1,67 3,48

Tabela 4.5 – Resumo dos ensaios do loop de bombeamento.

4.2.3 Comparação entre ensaios de loop de bombeamento MPSA e USP

A Figura 4.10 mostra uma massa identificada como não homogênea, retida à frente de um PIG, instrumento de limpeza anual do mineroduto da MPSA, durante a sua chegada ao seu destino final em Barcarena.

Durante uma campanha de limpeza do mineroduto através de PIGS, evidenciou-se a presença de material depositado ao longo da linha, desencadeando a execução de ensaios específicos através de circuito de teste com tubulação de 24 polegadas presente na estação de bombas em Paragominas, visando determinar o comportamento hidráulico da polpa de bauxita atualmente produzida pelas usinas de beneficiamento (COSTA, 2016).

Segundo Costa (2016), com o objetivo de reduzir eventos de plugs (obstruções) com minério, provenientes de sedimentação de partículas ao longo do mineroduto, foram realizados estudos para avaliação da velocidade de deposição e perda de carga do mineroduto da MPSA.

Figura 4.10 – Material retido em frente ao PIG. Fonte: COSTA (2016).

A Tabela 4.6 e Figura 4.11 mostram os parâmetros dos ensaios de loop de bombeamento na MPSA e na USP, em polpas de 50% de concentração mássica.

Considerando que na MPSA os ensaios de loop são em escala industrial, com tubulação de 24 polegadas de diâmetro, bombas e demais componentes pertencentes ao circuito da estação de bombas do mineroduto, sendo 12,20 o fator de escala do diâmetro e 1,76 o fator de escala da velocidade, resulta nos seguintes acréscimos em relação à unidade de loop de bombeamento da USP: diâmetro da tubulação D (m) igual a 1.100 %; vazão Q (m³/hora) igual 24.619 % e Re_{MR} (5.017%).

Observa-se que quanto ao parâmetro de perda de carga por metro de tubo horizontal ΔH/L (KPa/m) houve uma redução de 86 % em relação ao loop de bombeamento da USP, em função da geometria favorável do circuito (diâmetro de 24 polegadas e tubulação na posição horizontal).

De modo semelhante ao número de Froud Modificado mostra uma redução de 52 % em relação ao loop de bombeamento da USP, influenciada também por esta geometria do circuito.

Quanto à velocidade critica de deposição Vc (m/s), o acréscimo em relação a unidade de loop de bombeamento da USP foi de 76%, acompanhando o

significativo acréscimo no diâmetro médio de Sauter da polpa do loop MPSA em 828 %, mas mantidas as respectivas concentrações mássicas e densidade da polpa.

Loop USP (A)										
Diâmetro médio de Sauter (µm)	% sólidos em massa	Massa específica da polpa (kg/m ³)	D (m)	V _c (m/s)	Q (m ³ /hora)	∆P/L (kPa/m)	Re _{MR}	Froud Modificado		
9,847	50,0	1.413	0,05	1,00	7,09	1,67	2.882,75	0,840		
Loop MPSA (B)										
Diâmetro médio de Sauter (µm)	% sólidos em massa	Massa específica da polpa (kg/m ³)	D (m)	V _c (m/s)	Q (m ³ /hora)	∆P/L (kPa/m)	Re _{MR}	Froud Modificado		
91,400	50,0	1.450	0,61	1,76	1.752,59	0,24	147.501,58	0,402		
			Acréscimo %	% = ((B - A)	/ A)*100					
828	0	3	1.100	76	24.619	-86	5.017	-52		

Tabela 4.6 - Loop MPSA x Loop USP - Polpa 50% sólidos.

A Figura 4.11 mostra as respectivas séries de dados representadas pelo gradiente de pressão por metro de tubulação horizontal (Δ P/L), em kPa/m, e a velocidade de fluxo, em (m/s), referentes aos ensaios da polpa na concentração mássica de 50% de sólidos nos ensaios de loop MPSA e USP. Verifica-se que as maiores pressões estão relacionadas ao loop USP, sendo influenciadas pela sua geometria (menor diâmetro de tubulação).

Figura 4.11- Gradiente de pressão versus velocidade de fluxo nas unidades de loop de bombeamento MPSA e USP.

4.2.4 Perda de carga por metro linear de tubulação horizontal

As Figuras 4.12 a 4.17 mostram as curvas das perdas de carga por metro de tubo horizontal ($\Delta P/L$) em função da velocidade média de transporte (m/s) e curvas das perdas de carga por metro de tubo horizontal ($\Delta P/L$) em função da vazão volumétrica (m³/h).

Observa-se que a concentração de sólidos exerce uma forte influência na elevação da perda de carga nas 3 polpas ensaiadas, sendo diretamente proporcional esta relação e em proporções maiores na seguinte ordem: fração de finos; composta e fração de grossos.

Figura 4.12 – Gradiente de pressão em função da velocidade de fluxo para a fração de grossos.

Figura 4.13 – Gradiente de pressão em função da vazão volumétrica para a fração de grossos.

Figura 4.14 – Gradiente de pressão em função da velocidade de fluxo para a fração de finos.

Figura 4.15 – Gradiente de pressão em função da vazão volumétrica para a fração de finos.

Figura 4.16 – Gradiente de pressão em função da velocidade de fluxo para a composta.

Figura 4.17 – Gradiente de pressão em função da vazão volumétrica para a composta.

Nas 3 polpas ensaiadas, a queda de pressão ΔP/L (kPa/m), deve-se ao aumento da concentração de sólidos, sendo em maior intensidade na polpa de finos (d_{Sauter} = 8,103 mm), corroborado fortemente pelo efeito da viscosidade, constatado na caracterização reológica.

As Figuras 4.18 a 4.25 mostram esta comprovação, podendo ser justificada pelos efeitos das forças viscosas na polpa de fração de finos e na polpa composta, com reduzidos diâmetros de Sauter, respectivamente 8,103 µm e 9,847 µm.

Segundo Fox et al. (2011) a experiência mostra que, no escoamento turbulento completamente desenvolvido, a queda de pressão, ΔP , causada por atrito em um tubo horizontal de área constante, depende do diâmetro, D, do comprimento, L, da rugosidade do tubo, e, da velocidade média do escoamento, V, da massa específica, ρ , e da viscosidade do fluido, μ , conforme a seguinte forma funcional: $\Delta P = \Delta P(D, L, e, V, \rho, \mu).$

Figura 4.18 – Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 60% de sólidos.

Figura 4.19 – Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 60% de sólidos.

Figura 4.20 – Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 50% de sólidos.

Figura 4.21 – Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 50% de sólidos.

Figura 4.22 – Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 40% de sólidos.

Figura 4.23 – Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 40% de sólidos.

Figura 4.24 – Gradiente de pressão em função da velocidade de fluxo nas polpas agrupadas na concentração de 30% de sólidos.

Figura 4.25 – Gradiente de pressão em função da vazão volumétrica nas polpas agrupadas na concentração de 30% de sólidos.

4.2.5 Gradiente de fluxo dos sólidos

Para efeito da verificação da segregação de particulas sólidas ao longo da tubulação procurou-se analisar as diferenças de comportamento entre as 3 polpas

ensaiadas (grossos; finos e composta), na concentração de 60% sólidos em peso e na velocidade de 20% acima da velocidade critica de cada polpa.

O APÊNDICE K apresenta os resultados da amostragem do fluxo, repartido em cada setor transversal da tubulação (Base, Meio e Topo), indicando as massas de sólidos (g), as concentrações mássicas (%), as áreas dos setores (Ai) em cm², as relações concentrações mássicas por unidade de área (cm²) de cada setor, o perfil de concentração de sólidos, em percentual, determinado com base na concentração mássica de cada setor relacionado com a área do mesmo (P_{cs}).

O material coletado em cada setor transversal foi analisado em flurescência de raios X (FRX), visando a determinação dos principais óxidos da polpa de bauxita: Al₂O₃; Fe₂O₃; SiO₂ e TiO₂. A caixa de polpa também foi amostrada e ensaiada em FRX para estes mesmos elementos de maneira a enriquecer a comparação.

Observa-se que há uma segregação na base da tubulação, em maior grau na polpa de grossos, enquanto que no meio e topo da tubulação as segregações se equivalem nas 3 polpas.

Então, como apresentado na Tabela 4.7, observa-se que na base da tubulação a segregação é maior para os parâmetros: concentração de sólidos em peso (Cwi); o perfil da concentração de sólidos (Pcs), e as participações dos principais óxidos, onde notadamente verifica-se que o fator peso é preponderante nos óxidos (Fe₂O₃ e TiO₂) e podendo assumir que o fator tamanho do grão é determinante para a silica (SiO₂).

A explicação deste fenômeno reside nas seguintes considerações:

- As amostragens do longo do perfil vertical da tubulação foram realizadas sob condições operacionais que favoreciam a ocorrência de um leito móvel, visto que seu objetivo era o de determinar a velocidade critica de transporte (V_c) da polpa naquelas condições;
- b) Num fluxo de polpa heterogêneo, as particulas sólidas que sejam suficientemente grandes, densas e num estado apropriadamente diluido deverão sedimentar, de modo que, as particulas não serão mais uniformemente distribuidas no campo de fluxo, ou seja, a polpa é heterogênea, mas a maioria das particulas ainda está totalmente suspensa (JACOBS, 1991);
- c) No caso observado, houve a formação de um leito móvel, onde as particulas movem-se ou deslizam ao longo da parte inferior do duto devido a força de

cisalhamento ocasionada pelo movimento da polpa. A parte superior da seção transversal do tubo é ocupada por uma mistura heterogênea de particulas de menor tamanho que são arrastadas com o fluido carreador, em função disto, as camadas superiores do leito se movem mais rapidamente do que as camadas mais baixas do tubo horizontal (BAHA ABULNAGA, 2002).

Tabela 4.7 – Valores da distribuição de sólidos ao longo da seção transversal do tubo.

Polpa grossos (+150# a +48#) - Coleta de amostras no ponto correspondente a V = 1,51m/s								
	Conc. Peso (C _{wi})	P. (%)		Teores e	m FRX			
	(%)	F CS (10)	Al ₂ O ₃ (%)	$Fe_{2}O_{3}(\%)$	SiO ₂ (%)	TiO ₂ (%)		
Торо	54,74	26,02	57,61	7,49	3,60	1,89		
Meio	62,04	43,56	57,94	7,49	3,59	1,84		
Base	63,98	30,42	57,42	7,66	3,61	1,94		
TANQUE	60,00		57,61	7,73	3,67	2,02		

Perfil do Gradiente de Fluxo

Polpa finos (-150# a - 400	#) - Coleta d	e amostras no ponto	correspondente a V	= 1,35m/s
----------------------------	---------------	---------------------	--------------------	-----------

	Conc. Peso (C _{wi})	D. (%)	Teores em FRX					
	(%)	Г <u>С</u> S(10)	Al ₂ O ₃ (%)	Fe_2O_3 (%)	SiO ₂ (%)	TiO ₂ (%)		
Торо	58,12	27,99	52,73	12,01	5,71	1,93		
Meio	60,20	42,82	52,80	12,08	5,77	1,93		
Base	60,60	29,19	52,92	12,07	5,71	1,94		
TANQUE	60,00		53,12	11,79	5,60	1,87		

Polpa composta (+48# a - 400#) - Coleta de amostras no ponto correspondente a V = 1,51 m/s

	Conc. Peso (C _{wi})	P. (%)	Teores em FRX					
	(%)	P _{CS} (%)	Al ₂ O ₃ (%)	Fe_2O_3 (%)	SiO ₂ (%)	TiO ₂ (%)		
Торо	57,24	27,46	54,53	10,57	4,95	1,93		
Meio	60,87	43,12	54,38	10,65	4,99	1,94		
Base	61,35	29,43	54,48	10,63	4,97	1,94		
TANQUE	60,00		54,11	10,96	5,10	1,96		

4.3 ENSAIOS EXPERIMENTAIS DE ESFERICIDADE

No APÊNDICE B estão apresentados os ensaios experimentais das polpas ensaiadas (grossos, finos e composta) visando a determinação do fator de forma (esfericidade) das particulas constituintes via permeametria, constando de: Tabelas com os resultados da calibração do aparato e resultados dos ensaios com carga;

- Tabelas com os cálculos dos parâmetros e gráficos das curvas da permeametria.

A Tabela 4.8 apresenta um resumo dos parâmetros dos ensaios da permeametria mostrando maiores elevações de pressão nos ensaios com as polpas de finos e composta, indicando um maior grau de compactação destas amostras, podendo sugerir que o maior coeficiente de não uniformidade aliado aos respectivos menores diâmetros de Sauter contribui para isto, conforme demonstrado nas Tabelas 4.9 e 4.10.

Uma análise da Figura 4.26 - Curvas da Permeametria - Calibração e Ensaios, permite deduzir que estas polpas (finos e composta) possuem um melhor arranjo das particulas, aumentando os vazios (porosidades maiores), e apresentando um maior grau de arredondamento das particulas (esfericidade) em compração à polpa de grossos.

O coeficiente de não uniformidade (CNU) é a relação entre o diâmetro pelo qual passam 60% das partículas e o diâmetro pelo qual passam 10% das partículas, sendo dado por CNU = D_{60}/D_{10} (CAPUTO, 2015), onde: CNU < 5: muito uniforme;

5 < CNU < 15: uniformidade média;

CNU > 15: não uniforme

Tabela 4.8 – Resumo dos Parâmetros dos Ensaios da Permeametria.	

	Perda Carga - <u>∧</u> P/L (KPa/m)						
Vazão (m³/s)	Branco (Sem sólidos) - fluido água	Com sólidos >150# - fluido água	Branco (Sem sólidos) - fluido mercúrio	Com sólidos <150# - fluido mercúrio	Com sólidos Composta - fluido mercúrio		
0,00E+00	0,56	0,00	34,22	7,60	0,00		
1,67E-05	6,30	7,70	41,82	304,16	178,69		
2,50E-05	8,96	11,20	43,72	454,34	271,84		
3,33E-05	11,76	13,72	49,43	528,48	368,79		
4,17E-05	15,12	16,67	51,33	560,79	446,73		
5,00E-05	19,05	19,61	57,03				
5,83E-05	22,69	22,41	62,73				
6,67E-05	26,33	25,21	66,53				
7,50E-05	32,49	25,49	79,84				
8,33E-05	36,69	29,55	91,25				

Figura 4.26 - Curvas da Permeametria - Calibração e Ensaios.

Tabela 4.9 – Resultados d	la Permeametria.
---------------------------	------------------

Polpas	Porosidade (ɛ)	Esfericidade (ψ)	D _{sauter} (µm)	Vazão ar	Dif. Pressão	CNU (d ₆₀ /d ₁₀)
Grossos	0,5044	0,5833	155,885	Maiores	Menores	2,42 (muito uniforme)
Finos	0,7000	0,6538	8,103	Menores	Maiores	9,56 (uniformidade média)
Composta	0,6495	0,7919	9,847	Médias	Médias	14,12 (uniformidade média)

Tabela 4.10 – Determinação do Grau de Esfericidade.

Polpa Grossos (+150# a +48#)							
ε κ D _p μ ψ							
0,5044 2,88E-		0,0155885	0,0001810	0,5833			

Polpa Finos (-150# a -400#)						
ε κ D _p μ ψ						
0,7000	7,13E-09	0,0008103	0,0001810	0,6538		

Polpa Composta (+48# a -400#)						
ε κ D _p μ ч						
0,6495	9,04E-09	0,0009847	0,0001810	0,7919		

4.4 ANÁLISE GRANULOMÉTRICA

4.4.1 Técnica do Peneiramento a Úmido

A Tabela 4.11 e a Figura 4.27 mostram os resultados dos ensaios de granulometria da amostra estudada, separada em frações: Grossos (150# a 48#); Finos (-400# a -150#) e Composta (-400# a 48#).

As frações de Grossos e Finos representam respectivamente 31,05% e 68,95% da massa total da amostra.

		Abertura		Peso (a)	Percentagens		
		Mesh (#)	mm	1 eso (g)	Retida	Ret. Acum.	Pass. Acum.
Composta	Grossos	48	0,297	82,00	2,35	2,35	97,65
		65	0,210	183,00	5,25	7,60	92,40
		100	0,149	365,00	10,46	18,06	81,94
		150	0,105	453,00	12,99	31,05	68,95
	Finos	200	0,074	588,00	16,86	47,91	52,09
		270	0,053	470,00	13,47	61,38	38,62
		325	0,044	394,00	11,30	72,68	27,32
		400	0,037	171,00	4,90	77,58	22,42
		- 400	- 0,037	782,00	22,42	100,00	0,00
		То	tal	3.488,00	100,00	-	-

Tabela 4.11 – Análise Granulométrica das Amostras de Polpa.

Figura 4.27 - Gráfico da análise granulométrica da amostra composta.

4.4.2 Técnica da Difração a Laser – Malvern

A Figuras 4.28 a 4.30 mostram as curvas da distribuição de frequência e as curvas da distribuição granulométrica do % passante acumulado das frações de Grossos (150# a 48#); Finos (150# a 48#) e Composta (-400# a 48#), respectivamente, segundo a técnica da difração a laser, em equipamento Malvern.

Os respectivos diâmetros de Sauter encontrados, considerando as frações individualizadas são: 178,680 µm; 8,102 µm e 36,479 µm.

Figura 4.28 - Ensaio de granulometria da fração de Grossos em Malvern.

Figura 4.29 - Ensaio de granulometria da fração de Finos em Malvern.

Figura 4.30 - Ensaio de granulometria da fração Composta em Malvern.

4.5 ENSAIOS EM FLUORESCÊNCIA DE RAIOS X - FRX

A Tabela 4.12 apresenta os resultados dos ensaios em espectrometria de fluorescência de raios X – FRX. Esta análise química semi-quantitativa mostra os teores dos óxidos totais Al_2O_3 ; SiO_2 , Fe_2O_3 e Ti O_2 onde a fração de Grossos (+150# a +48#) possui maior ter de alumina.

As frações de Finos (-400# a -150#) e Composta (-400# a +48#) possuem maiores teores de sílica e hematita, indicando que a hematita, possivelmente, encontra-se associada a gibbsita e a caulinita.

Verificado que a ilmenita (TiO₂), está mais presente na fração de Grossos.

Freeãee	Teores (%)						
Frações	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	TiO ₂ (%)			
Grossos (+150# a +48#)	57,61	7,73	3,67	2,02			
Finos (-400# a -150#)	53,12	11,79	5,60	1,87			
Composta (-400# a +48#)	54,11	10,96	5,10	1,96			

Tabela 4.12 – Ensaios em Fluorescência de Raios X.

4.6 MICROSCOPIA ELETRÔNICA DE VARREDURA - MEV

A análise resultante dos ensaios de microscopia eletrônica de varredura confirma a heterogeneidade morfológica entre as partículas das diferentes frações analisadas, além de se observar diferenças de tonalidade na cor cinza em algumas partículas.

Em relação ao arredondamento dos grãos, segundo os parâmetros visuais e qualitativos definidos por POWERS (1953), as partículas constituintes das frações analisadas de bauxita apresentam as formas variando de angulosas/sub-angulosas a arredondadas/sub-arredondadas e superfícies de aparência rugosas.

A Figura 4.31 mostra as micrografias, com aumento de 100x, correspondentes às frações de grossos retidas nas malhas de 48#; 65#; 100# e 150#, enquanto que a Figura 4.32 mostra as micrografias, também com aumento de 100x, correspondentes as frações de finos retidas nas malhas de 200#; 250# ; 325# e 400#.

Figura 4.31 - Frações Grossos (48 #; 65 #; 100 #; 150 #).

Figura 4.32 - Frações Finos (200 #; 270 #; 325 #; 400 #).

As Figuras 4.33 e 4.34 apresentam as micrografias das partículas referentes à fração passante da malha de 400# (-400#) em dois aumentos, 100x e 500x, respectivamente.

Figura 4.33 – Fração -400# em aumento de 100X.

Figura 4.34 – Fração -400# em aumento de 500X.

Observa-se que devido ao estado de elevada finura e a consequente aglomeração natural das partículas das Figuras 4.33 e 4.34, a análise morfológica 121

desta faixa granulométrica há a necessidade da aplicação de técnicas adequadas a essa mínima dimensão de partícula.

4.7 ENSAIOS DE PICNOMETRIA

A Tabela 4.13 apresenta os resultados dos ensaios em picnômetro, realizados em triplicata nas polpas ensaiadas na unidade de loop de bombeamento.

POLPAS	T1	T2	Т3	MEDIA
GROSSOS	2,460	2,470	2,481	2,470
FINOS	2,419	2,365	2,417	2,400
COMPOSTA	2,441	2,351	2,470	2,421

Tabela 4.13 – Densidade Relativa dos Grãos.

4.8 ESTUDOS ACADÊMICOS DE SUPORTE AOS TRABALHOS

Este item aborda uma sintese dos estudos conduzidos por Acadêmicos dos Cursos de Mestrado e Graduação em Engenharia Química da UFPA, os quais deram suporte a esta Tese.

4.8.1 Dissertação de mestrado

4.8.1.1 Proposta de trabalho

Influência das frações (-100# a 150#; -150# a 200#; -200# a 270# e -270# a 325#) na reologia da polpa de bauxita a 50% (m/v) sólidos.

4.8.1.2 Estudos e Ensaios

- Caracterização mineralógica via DRX e MEV;
- Estudo dos parâmetros reológicos via viscosimetro Haake VT 550, com sensor tipo cilindro coaxial SV1 a T 30º C;
- Ensaios de defloculação via poliacrilato de sódio em concentrações variando de 0 a 1% (m/m);
- Ensaios de histerese na polpa na concentração ideal de defloculante.

4.8.1.3 Conclusões

- -Frações analisadas com heterogeneidade morfológica, classificadas qualitativamente como angulosas/sub-angulosas a arredondadas/sub-arredondadas, apresentando mineralogia semelhante (gibbsita, caulinita, hematita, goethita e anatásio) em diferentes proporções, observando-se um incremento na concentração das frações mais grossas para as frações mais finas analisadas;
- Quanto menor o diâmetro médio das particulas, maior a quantidade de defloculante necessária à estabilização da polpa;
- Comportamento reológico não-newtoniano e dependente do tempo, apresentando caracteristicas de fluido reopético;
- A diminuição do tamanho médio das particulas influencia a magnitude da área de histerese formada, causando uma diminuição do caráter reopético.

4.8.2 Trabalho de conclusão de curso - TCC

4.8.2.1 Proposta de trabalho

Avaliação da eficácia do aditivo Magnafloc 10 à base de poliacrilato de sódio (PAS) através do estudo das propriedades reológicas da polpas de bauxita a 50% sólidos nas frações -100# a 150# e -400#.

4.8.2.2 Estudos e Ensaios

- Caracterização mineralógica via DRX;
- Análise do pH das polpas sem e com o aditivo com a finalidade de verificar se há a variação significativa deste parâmetro;
- Ensaios reológicos com a elaboração de curvas de histerese das polpas com o aditivo na concentração ideal;
- Modelagem matemática feita a partir das curvas de histerese.

4.8.2.3 Conclusões

- Frações ricas em gibbsita, mas com variação qualitativa pouco significativa entre as frações estudadas;
- O pH não sofreu mudança significativa após a adição do aditivo;
- Fração -100# a 150# com concentração ideal de aditivo em 0,3% em peso, atuando como defloculante;

- Fração -400# com concentração ideal de aditivo em 0,8% em peso, atuando como floculante;
- Curvas de histerese apresentaram comportamento reopético para a fração -100# a 150# e tixotrópico para a fração -400#;
- Modelagem matemática feita a partir dos resultados das curvas de histerese mostrou que a fração -100# a 150# se ajustou melhor ao modelo de Herschel-Bulkley;
- Não foi realizada a modelagem da fração -400# devido a polpa apresentar comportamento muito instável, não sendo possível o ajuste de maneira satisfatória a nenhum dos modelos conhecidos e aceitos.

4.8.3 Dissertação de mestrado do autor desta tese

4.8.3.1 Proposta de trabalho

Revisão da especificação granulométrica de uma polpa de bauxita da MPSA, em face as dificuldades operacionais verificadas em escala industrial da bauxita.

4.8.3.2 Estudos e Ensaios

- Ensaios de caracterização reológica de três polpas de bauxita, de diferentes granulometrias, com análise dos parâmetros viscosidade e tensão de cisalhamento e as propriedades de tixotropia e reopexia;
- Modelamento matemático dos fatores de atrito destas polpas segundo o modelo de Herschel-Bulkley;
- Comparação dos fatores de atrito modelados aos fatores de atrito da bibliografia calculados pelas correlações de Dodge e Metzner (1959).

4.8.3.3 Conclusões

- Evidenciado uma heterogeneidade morfológica das amostras;
- Verificado que a granulometria e a concentração de sólidos são parâmetros relevantes na determinação da viscosidade;
- Não detectada a presença da tixotropia, muito comum em argilominerais, mas verificado pequenos traços de reopexia as taxas de cisalhamento de 200 s⁻¹;
- Verificado a concordância dos fatores de atrito entre o modelo estudado, Herschel-Bulkley, e a correlação proposta por Dodge e Metzner (1959).

4.9 RESULTADOS E DISCUSSÃO DOS FATORES DE ATRITO

4.9.1 Considerações

Os resultados experimentais do fator de atrito, serão apresentados e discutidos em duas partes:

- Abordagem dos resultados obtidos com água durante a calibração da unidade;
- Resultados obtidos para o escoamento das frações estudadas (grossos, finos e composta), segundo as concentrações mássicas de 30%; 40%; 50% e 60%.

4.9.2 Calibração da Unidade Experimental

Esta etapa consistiu na calibração da unidade com água, onde os dados experimentais de V e ΔP permitiram determinar o fator de atrito de Fanning (f) segundo a Equação (4.1).

$$f_{exp} = \frac{D\Delta P}{2\rho L V^2} \tag{4.1}$$

Os dados de fator de atrito experimentais estão contidos no APÊNDICE J.

Na Tabela 4.14 e Figura 4.35 pode-se observar que os desvios dos fatores modelados (equação de Nikuradse; equação da Lei Universal de Prandtl e equação de Blasius) em relação aos fatores experimentais foram menores que 5% em módulo para a faixa de Reynolds entre 6,08E+04 e 1,22E+05; mas a partir dai há um acréscimo gradual do desvio chegando a 16% em módulo para a faixa de Reynolds entre 1,22E+05 e 1,78E+05, mostrando uma ligeira fragilidade dos fatores modelados, mas pode-se ser considerado normal em função da forte turbulência devido aos elevados Números de Reynolds.

Re	AP (kPa)	V (m/s)	((fexp- fmod)/fexp)*100	((fexp- fmod)/fexp)*100	((fexp- fmod)/fexp)*100	
	(u)	V (1173)	Eq. Nikuradse	Lei Universal Prandtl	Eq. Blasius	
6,08E+04	0,294	1,20	3,71	3,69	3,22	
1,02E+05	0,686	2,01	-3,70	-3,72	-2,29	
1,22E+05	0,932	2,41	-5,81	-5,83	-3,55	
1,32E+05	1,030	2,60	-9,71	-9,73	-7,00	
1,41E+05	1,177	2,79	-8,97	-8,98	-5,92	
1,78E+05	1,667	3,52	-16,87	-16,89	-12,29	

Tabela 4.14 – Fatores de Atrito – Calibração da Unidade Experimental com

Figura 4.35 – Fatores de atrito em função do número de Reynolds – Água.

A Tabela 4.15 e a Figura 4.36 apresentam os fatores de atrito, confirmando a perfeita ajustagem entre os fatores da equação de Nikuradse e fatores da equação da lei universal de Prandtl. (FOX, 2011).

f _{exp}	f _{mod} (Eq. Nikuradse)	f _{mod} (Lei Universal Prandtl)	f _{mod} (Eq. Blasius)
5,20E-03	5,01E-03	5,01E-03	5,03E-03
4,32E-03	4,48E-03	4,48E-03	4,42E-03
4,08E-03	4,32E-03	4,32E-03	4,23E-03
3,88E-03	4,25E-03	4,25E-03	4,15E-03
3,85E-03	4,19E-03	4,19E-03	4,07E-03
3,42E-03	4,00E-03	4,00E-03	3,84E-03

Tabela 4.15 – Fatores de Atrito Experimentais e Modelados – Água.

Figura 4.36 – Fatores de atrito experimentais x modelados – Água.

4.9.3 Fatores de Atrito da Fração de Grossos

A fração de grossos apresentou melhores ajustes segundo o modelo da lei de potência (Power Law), com fatores de atrito experimentais (determinados nos ensaios de loop de bombeamento) e fatores de atrito modelados (segundo a Equação 2.80), definida na bibliografia, sendo o fluxo turbulento em todas as concentrações mássicas estudadas.

Os dados de fator de atrito experimentais estão contidos no APÊNDICE G.

As Figuras 4.37 e 4.38 mostram a correlação entre os fatores de atrito experimentais e modelados resultando em coeficientes de determinação (R^2) > 0,92 para as concentrações mássicas de 30%; 40% e 50% de sólidos e (R^2) > 0,83 para a concentração mássica de 60%.

Figura 4.37– Correlação entre os fatores experimentais e modelados – Fração Grossos 30% e 40% sólidos.

Figura 4.38 – Correlação entre os fatores experimentais e modelados – Fração Grossos 50% e 60% sólidos.

A Figura 4.39 apresenta o gráfico **f x Rem** da polpa na concentração mássica de 60%, evidenciando o considerável efeito da concentração mássica no desvio entre os fatores de atrito experimentais (f_{exp}) e modelados (f_{mod}).

Figura 4.39 – Fatores de atrito x Re_{MR} – Grossos – 60% sólidos.

4.9.4 Fatores de Atrito da Fração de Finos

A fração de finos apresentou melhores ajustes segundo o modelo Bingham, com fatores de atrito experimentais (determinados nos ensaios de loop de bombeamento) e fatores de atrito modelados segundo a Equação (2.86), no caso de fluxo laminar e segundo a Equação (2.90), no caso de fluxo turbulento.

Os dados de fator de atrito experimentais estão contidos no APÊNDICE H.

As Figuras 4.40 e 4.41 mostram a correlação entre os fatores de atrito experimentais e modelados resultando em coeficientes de determinação (R²) acima de 0,92 nas concentrações mássicas de 40%; 50% e 60% de sólidos, enquanto que a fração com a concentração mássica de 30% de sólidos apresentou uma menor concordância entre fatores, sendo o coeficiente de determinação (R²) igual a 0,78.

Figura 4.40 – Correlação entre os fatores experimentais e modelados – Fração Finos 30% e 40% sólidos.

Figura 4.41 – Correlação entre os fatores experimentais e modelados – Fração Finos 50% e 60% sólidos.

A Figura 4.42 apresenta o gráfico **f x Rem** da polpa na concentração mássica de 30%; evidenciando, de modo diferente a polpa de grossos, que a concentração mássica não contribui no desvio entre os fatores de atrito experimentais (f_{exp}) e modelados (f_{mod}). Neste caso sugere-se uma maior influência do fator de atrito modelado, o qual considera uma composição entre o fluxo laminar e o fluxo turbulento, onde no fluxo laminar utiliza-se da equação de Buckingham Reiner, com forte influência de parâmetros de caracterização reológica (tensão limite de escoamento e viscosidade plástica).

Figura 4.42 – Fatores de atrito x Re_{MR} – Finos – 30% sólidos.

4.9.5 Fatores de Atrito da Fração Composta

A fração composta apresentou ajustes segundo o modelo lei da potência (power law), nas concentrações mássicas de 30% e 40%, com fluxo de comportamento turbulento. As concentrações mássicas de 50% e 60%, o ajuste foi segundo o modelo Bingham, com fluxo de comportamento turbulento (concentração mássica de 50%) e fluxos de comportamentos laminar/turbulento (concentração mássica de 60%).

Os dados de fator de atrito experimental são apresentados no APÊNDICE I.

As Figuras 4.43 e 4.44 mostram as correlações entre os fatores de atrito experimentais (determinados nos ensaios de loop de bombeamento) e os fatores de atrito modelados segundo a Equação 2.80 (fluxo Power Law turbulento), Equação 2.86 (fluxo Bingham laminar) e Equação 2.90 (fluxo Bingham turbulento).

Os coeficientes de determinação (R²) mostram uma boa concordância nas concentrações mássicas de 40%; 50% e 60% e uma menor concordância na concentração mássica de 30%.

Figura 4.43 – Correlação entre os fatores experimentais e modelados – Composta 30% e 40% sólidos.

Figura 4.44 – Correlação entre os fatores experimentais e modelados – Composta 50% e 60% sólidos.

A Figura 4.45 apresenta o gráfico **f x Rem** da polpa na concentração mássica de 30%; evidenciando, de modo semelhante a polpa de finos, que a concentração mássica não contribui no desvio entre os fatores de atrito experimentais (f_{exp}) e modelados (f_{mod}). Sugere-se também uma maior influência do fator de atrito modelado, o qual considera uma composição entre o escoamento laminar e o escoamento turbulento, onde no escoamento laminar utiliza-se da equação de Buckingham Reiner, com forte influência de parâmetros de caracterização reológica (tensão limite de escoamento e viscosidade plástica).

Figura 4.45 - Fatores de atrito x Re_{MR} – Composta – 30% sólidos.

4.9.6 Tratamento Estatístico dos Fatores de Atrito

Os dados dos fatores de atrito correspondentes a 117 valores, visando a determinação dos fatores de atrito experimentais (fexp) e fatores de atrito modelados (fmod), foram tratados estatisticamente através de:

$$Variação Média (\%) = \frac{100}{n} \left[\sum_{i=1}^{n} \left(\frac{f_{exp} - f_{mod}}{f_{exp}} \right) \right]$$
(4.1)

A Variação Média (%) representa a média percentual dos desvios entre o fator de atrito experimental (f_{exp}) e o fator de atrito modelado (fmod) predito pelas correlações da bibliografia empregadas.

$$Razão Média = \frac{1}{n} \left[\sum_{i=1}^{n} \frac{f_{exp}}{f_{mod}} \right]$$
(4.2)

A Razão Média representa a média dos quocientes entre os fatores de atrito experimental (f_{exp}) e fatores de atrito modelados (f_{mod}).

Observa-se na Tabela 4.16 e Figuras 4.46 e 4.47 que a fração de grossos 150# a 48#, fornece as menores Razões Médias nas concentrações mássicas de

sólidos de 30%; 40% e 50%; enquanto que a fração de finos -150# a -400# apresenta a menor Razão Média na concentração mássica de sólidos de 60%.

Observa-se também que nesta tabela a fração de grossos apresenta as menores Variações Médias (%) nas concentrações mássicas de sólidos de 40% e 50%, enquanto que a composta apresenta as menores Variações Médias (%) nas concentrações mássicas de sólidos de 30% e 60%.

-		Razão Média	I	Variação Média (%)				
Cw	Grossos	Finos	Composta	Grossos	Finos	Composta		
30% Sólidos	0,81	4,11	1,29	-23,99	75,30	21,78		
40% Sólidos	0,99	3,24	2,93	-1,16	68,85	65,81		
50% Sólidos	1,24	3,23	6,30	19,27	60,24	83,97		
60% Sólidos	0,62	0,47	3,02	-76,02	-112,90	48,29		

Tabela 4.16 – Tratamento Estatístico dos Fatores de Atrito.

Razão (f_{exp}/f_{mod})

Figura 4.46 – Razão Média dos Fatores de Atrito.

Figura 4.47 – Variação Média (%) dos Fatores de Atrito.

As Figuras (4.48) a (4.50) representam gráficos de erros os quais mostram o comportamento da variação dos fatores de atrito, determinada pela Equação (4.2), evidenciando uma considerável aleatoriedade da concentração mássica de 60%, em todas as frações (grossos, finos e composta). As demais concentrações mássicas (50%; 40% e 30%) se ajustam melhor na fração de grossos e em seguida na fração composta.

Fração de Finos.

Figura 4.50 - Gráfico de Erros da Fração Composta.

4.10 RELACIONAMENTO DAS VARIÁVEIS NO MOVIMENTO DE UMA MISTURA SÓLIDOS-LIQUIDO NO BOMBEAMENTO

Como resultado do trabalho de GRAF et al. (1970), referente ao movimento de uma mistura de solidos-liquido através de uma tubulação as variáveis podem ser relacionadas segundo a Equação (2.101):

f (V, D,
$$\mathcal{E}$$
, ρ , ν , g, ρ s, d, d₉₀/d₅₀, C) = 0 (2.101)

Após rearranjos e testes experimentais, os dados foram resumidos e em seguida os Autores chegaram a Equação (2.105):

$$\frac{V_c}{\sqrt{2gD(s_s-1)}} = f\left[\frac{d}{D}, C\right]$$
(2.105)

Graficamente os dados foram representados segundo a Figura 2.24, onde no grafico (a) ficou comprovado que com o aumento da concentração de sólidos há um acréscimo do número de Froude. Agora em (b) mostra que com o aumento do diâmetro médio dos grãos há também o acréscimo do número de Froude.

Figura 2.24 – Representação Gráfica da Equação (2.102).

Esta comprovação de GRAF et al. (1970) é também confirmada nos parâmetros das polpas estudadas (grossos, finos e composta), conforme demonstram as Tabelas 4.17 e 4.18 e as Figuras 4.51 (concentração como parâmetro) e 4.52 (granulometria como parâmetro).

30% Sólidos							
	V _c (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
Grossos	1,10	2,470		0,9088	155,885		
Finos	0,70	2,400	0,0508	0,5926	8,103		
Composta	0,91	2,421		0,7647	9,847		
		40%	6 Sólidos				
	V_{c} (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
Grossos	1,12	2,470		0,9253	155,885		
Finos	0,73	2,400	0,0508	0,6180	8,103		
Composta	0,92	2,421		0,7731	9,847		
		50%	% Sólidos				
	V_{c} (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
Grossos	1,15	2,470		0,9501	155,885		
Finos	0,75	2,400	0,0508	0,6349	8,103		
Composta	1,00	2,421		0,8403	9,847		
		60%	% Sólidos				
	V_{c} (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
Grossos	1,22	2,470		1,0079	155,885		
Finos	0,86	2,400	0,0508	0,7280	8,103		
Composta	1,15	2,421		0,9663	9,847		

Tabela 4.17 – Variáveis do Gráfico (a).

Figura 4.51 - Concentração como parâmetro (a).

Polpa Grossos							
C _w (%)	V _c (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
30	1,10			0,0222			
40	1,12	2470	0.0509	0,0226	166 005		
50	1,15	2470	0,0508	0,0232	100,000		
60	1,22			0,0246			
		Р	olpa Finos				
C _w (%)	V _c (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
30	0,70			0,0143	8,103		
40	0,73	2400	0,0508	0,0149			
50	0,75	2400		0,0153			
60	0,86			0,0176			
		Polp	oa Compost	а			
C _w (%)	V _c (m/s)	Ss	D	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)		
30	0,91			0,0185			
40	0,92	2421	0.0509	0,0187	0.947		
50	1,00	2421	0,0000	0,0204	9,047		
60	1,15			0,0234			

Tabela 4.18 - Variáveis do Gráfico (b).

Os gráficos e tabelas apresentados confirmam que no movimento das frações estudadas (polpas de bauxita) a granulometria das partículas e a concentração mássica exercem considerável influência no comportamento do adimensional número de Froude modificado, o qual representa a razão entre forças inerciais e forças gravitacionais atuantes no escoamento.

Como ilustração adicional, a Tabela 4.19 e a Figura 4.53, extraídas do trabalho de GRAF et al. (1970), apresentam um resumo dos estudos denominados Gilbert's Experiments e Lehigh's Experiments, os quais estudaram o comportamento de soluções de areia e água, na concentração volumétrica de 15%, evidenciando também a importância do tamanho das partículas no movimento destas misturas.

Gilbert Experiments -15% Sólidos									
V_c (m/s)S_sD (m) $\frac{V_c}{\sqrt{2gD(S_s-1)}}$ d_{Sauter} (µm)									
Amostra1	1,30	2,650		0,7222	200,0				
Amostra2	3,45	2,650	1,9165	390,0					
Amostra3	stra3 5,60 2,650 3,1109 890,0								

Tabela 4.19 - Exemplos Adicionais de Variáveis do Gráfico (b).

	V _c (m/s)	Ss	D (m)	$\frac{V_c}{\sqrt{2gD(S_s-1)}}$	d _{Sauter} (μm)
Amostra1	0,73	2,650		0,3610	450,0
Amostra2	2,10	2,650	0,1270	1,0357	665,0
Amostra3	3,47	2,650		1,7113	880,0

Lehigh Experiments - 15% Sólidos

Froude Modificado x d (µm) - 15% Sólidos

Figura 4.53 – Exemplos adicionais de variáveis do gráfico (b) Fonte: GRAF et al. (1970).

CAPÍTULO 5

CONCLUSÕES E SUGESTÕES

5.1 CONCLUSÕES

A partir dos resultados apresentados e discutidos neste trabalho e dentro das condições operacionais utilizadas, foi possivel concluir que a distribuição granulométrica associada a concentração e a mineralogia das particulas exercem uma considerável influência nas propriedades reológicas e no transporte de polpa de bauxita por mineroduto.

Foi possivel avaliar as variáveis envolvidas no movimento de amostras de polpa, separadas em frações obedecendo ao "critério do vetor de transporte" proposto por GILLIES e SHOOK (1991) e WILSON et al. (1997), resultando nas seguintes frações assim denominadas:

Fração de Grossos: 150# (0,104 mm) a 48# (0,295 mm)

Fração de Finos: -150# (0,104 mm) a -400# (0,038 mm) - Vetor de transporte Fração Composta: -400# (0,038 mm) a 48# (0,295 mm)

Foi comprovado que estas variáveis estão inter-relacionadas em conformidade aos estudos de GRAF et al. (1970) e também a forma funcional da queda de pressão (Equação 2.54).

Foi verificado que a fração de finos associada a concentração mássica exerce forte influência na caracterização reológica da polpa, na viscosidade e tensão de cisalhamento e, no caso da fração de grossos, ficou evidenciado que nas mesmas concentrações de sólidos, além de exigir maiores pressões visando vencer a elevação da tensão de cisalhamento, há uma demanda de maiores velocidades de fluxo de bombeamento, devido a necessidade de maior turbulência para serem transportadas em condição de leito móvel.

Observado que a concentração de sólidos exerce forte influência na elevação da perda de carga nas 3 polpas ensaiadas no loop de bombeamento, sendo diretamente proporcional esta relação e em proporções maiores na seguinte ordem: fração de finos; fração composta e fração de grossos. Esta comprovação é justificada pelos efeitos das forças viscosas na polpa de fração de finos e na polpa composta, com reduzidos diâmetros de Sauter, respectivamente 8,103 µm e 9,847 µm.

Em ensaios de FRX foi verificado que as frações de finos e composta possuem maiores teores de silica e hematita, indicando que a hematita, possivelmente, encontra-se associada à gibbsita e a caulinita. Foi verificado que a ilmenita (TiO₂) está mais presente na fração de grossos;

Observado também nos ensaios de microscopia eletrônica de varredura (MEV) uma heterogeneidade morfológica entre as particulas das diferentes frações analisadas, além de se observar diferenças de brilho em algumas particulas e que em relação ao arredondamento, a análise em MEV mostra as formas das particulas variando de angulosas/sub-angulosas a arredondadas/sub-arredondadas e superficies de aparência rugosa.

Uma comparação entre ensaios de loop de bombeamento piloto e em escala industrial mostrou o fator de escala representado pela relação entre os diâmetros das instalações e as respectivas vazões de trabalho, permitindo verificar a influência da granulometria das polpas na velocidade de critica de deposição, na mesma concentração mássica (50%). Verificado que no loop MPSA de granulometria maior, com acréscimo de 91,89% no d₅₀, a velocidade critica (V_c) se elevou em 91,89% em relação a velocidade critica (V_c) do loop USP.

Importante registrar que os resultados apresentados nesta presente tese representam uma continuidade da trabalho de mestrado do autor com o enriquecimento de estudos acadêmicos (trabalhos de conclusão e dissertação de mestrado) de alunos do curso de engenharia quimica da UFPA-Universidade Federal do Pará, de maneira a contribuir com o do conhecimento nas etapas de projetos e operação das unidades de bombeamento de polpas de bauxita e polpa mineral de uma maneira geral.

5.2 SUGESTÕES PARA TRABALHOS FUTUROS

- Análise de velocidades criticas de escoamento de polpas de bauxita com a adição de dispersantes;
- Realização da caracterização reológica de polpas de bauxita através de reômetros;
- Estudo do fator de atrito em dutos de diferentes diâmetros, com o intuito de verificar a influência destes sobre a perda de carga.

REFERÊNCIAS BIBLIOGRÁFICAS

ABM – Associação Brasileira de Metalurgia, Materiais e Mineração. Disponível em: http://www.abmbrasil.com.br/news/materias/5970-mineroduto-do-sistema-minas-rio. Acessado em 20/05/2017.

ALLEN, T. **Particle Size Measurement**. 5th ed., London: Chapman and Hall, 1997, v. 1

BAHA ABULNAGA, P.E. **Slurry Systems Handbook**. McGRAW-HILL: New York, 2002.

BARBATO, C. N. **Estudo Reológico da Polpa de Bauxita**, 2009. Exame de Qualificação (Doutorado) – Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro – RJ, 2009.

BAILEY, W.; WEIR, I. S. Investigation of Methods for Direct Rheological Model Parameter Estimation, **Journal of Petroleum Science and Engineering**, v. 21, n. 1-2, pp. 1-33, 1998.

BARNES, H. A. Thixotropy: A Review. Journal Non-Newtonian Fluid Mechanics, v. 70, n. 1-2, p. 1-33, 1977.

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. **Transport Phenomena**. New York: John Wiley & Sons, 1960, 280p.

BRASS Engineering. **Curso de hidráulica aplicada a mineroductos**. Santiago. 2008 apud GOMES, H. A., **Dimensionamento de Mineroduto**.

BRUM, S. M. **Estudo da Influência da Granulometria no Comportamento Reológico de Polpa de Bauxita e no Fator de Atrito**. Dissertação (Mestrado em Engenharia Quimica), Universidade Federal do Pará. Belém, 2011.

CAPUTO, Homero Pinto. **Mecânica dos solos e suas aplicações.** São Paulo: Livros Técnicos e Científicos Editora Ltda, 7ª edição, 2015, v. 1.

CHAVES, A. P. **Teoria e Prática do Tratamento de Minérios** - Volume 1. São Paulo: Signus Editora, 2002; 266 p.

COSTA, M. M. M. **Comportamento do escoamento da polpa de bauxita de Paragominas em bombeamento a longa distância**. Dissertação (Mestrado em Engenharia Mecânica), Universidade Federal do Pará. Belém, 2016.

CRANE COMPANY. Flow of Fluids Through Valves, Fittings and Pipe. Technical Paper No. 410, 16th printing, Crane Co., 300 Park Avenue, New York, 1976.

DARBY, R.; MELSON J. 1981. "How to predict the friction factor for flow of Bingham plastics". **Chemical Engineering** 28: 59–61

DODGE, D. W.; METZNER, A. B. Turbulent Flow of Non-Newtonian Systems. AIChE J. 1959, v. 5, n. 2, p. 191-204.

DURAND, R. Basic relationship of the transportation of solids in pipes - experimental research. In Proc. Minnesota International Hydraulics Conference, pages 89–103, 1953.

ECM S. A. Projetos Industriais; **Sistema de manuseio de polpa**. **Curso Básico**. Belo Horizonte, 33 páginas, 2004.

ERGUN, S. Fluid flow through packed columns, **Chem. Eng. Progress**, vol. 48, n. 2, p. 89-94, 1952.

FOUST, A. S.; WENZEL, L. A.; CLUMP, W. M.; ANDERSEN, L. B. **Principios das Operações Unitárias**. 2^a ed. Rio de Janeiro: Livros Técnicos e Científicos, 1982.

FOX, R. W., PRITCHARD, P. J., & McDonald, A. T. 2011. Introdução à Mecânica dos Fluidos. 7^a ed. Rio de Janeiro: LTC

GARCIA, L. P. Obtenção de Parâmetros Reológicos para Polpas Minerais Contendo Partículas Grossas a Partir de Ensaios de Bombeamento. Dissertação (Mestrado). Universidade Santa Cecilia, Programa de Pós- Graduação em Engenharia Mecânica. Santos, SP, 2014. 105p.

GEHO, P. S. (2011). (WEIR Minerals). Acesso em 19 de Setembro de 2016, disponível em http://www.weirminerals.com.

GILLIES, R. G. And SHOOK, C. A. (1991). "A deposition velocity correlation for water slurries", Can. J. Chem. Eng. 69, 1225-1227 (1991).

GOMES, H. A., **Dimensionamento de Mineroduto**. Curso de Especialização em Engenharia de Recursos Minerais – CEERMIN – Universidade Federal de Minas Gerais. Belo Horizonte, MG, 2012. 58p.

GRAF, W. H.; ROBINSON, M. P.; YUCEL, O. "The Critical Velocity for Solid-Liquid Mixtures"; Proc. of the Internat. Conf. On Hydraulic Transport of Solids in Pipes in Coventry, England, British Hydrodynamics Research Association, September (1970);

HEYWOOD, H. Particle shape coefficients. J. Imp. Coil. Chem. Eng. Soc., V. 8, p. 25-33, 1954.

JACOBS, B. E. A. **Design of slurry transport systems**. Elsevier Science Publishers, BHR Group, 1991, 312p.

JONES, M. P. **Applied Mineralogy: A Quantitative Aproach**, Graham & Trotman, 1987;

KAUSHAL, D. R. TOMITA, Y.; DIGHADE, R. R. Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. **Powder Technology**, V. 125, p. 89-101, 2002.

KELLY, E. G. SPOTTSWOOD, D. J. Introduction to Mineral Processing; New York, Wiley Interscience Inc., 1982, 516p.

LINS, F. A. F.; ADAMIAN , R. Minerais coloidais, teoria DLVO estendida e forças estruturais. Rio de Janeiro: CETEM/MCT, 2000. (Série Tecnolologia Mineral, nº 78)

LUZ, A. B.; SAMPAIO, J. A.; FRANÇA, S. C. A. **Tratamento de Minérios**, 5^a Edição, Rio de Janeiro: CETEM/MCT, 2010.

MACHADO, J. C. V. **Reologia e Escoamento de Fluidos**. Rio de Janeiro, Interciência, 2002.

MADER, W. R. Bombeamento de Polpa (Apostila). Belo Horizonte: EPC, 1987.

MALIN, M. R. Turbulent Pipe Flow of Power-Law Fluids, Int. Comm. Heat Mass Transfer, Vol. 24, No. 7, pp. 977-988, 1977.

MARTINS, S. A. **Comparativo Entre Sistemas de Bombeamento de Polpa de Minério de Ferro com Diferentes Granulometrias**. Programa de Graduação em Eng. Mecânica; Universidade Federal de Minas Gerais; Belo Horizonte, MG; 2014.

MASSARANI, G. Fluidodinâmica em Sistemas Particulados – Ed. 2; Rio de Janeiro, Editora e-2, Guanabara dois, 2002; 607p.

MAXEY, J.; **Baker Hughes Drilling Fluids**. Thixotropy and Yield Stress Behavior in Drilling Fluids . USA: AADE – American Association of Drilling Engineers. 2007.

McCABE W. L.; SMITH, J. C.; HARRIOTT, P. **Unit Operations of Chemical Engineering**, 7th ed., New York, McGraw-Hill, 2005, 1140 p.

METZNER, A. B.; REED, J. C. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow Regions. **AIChE J**., v. 1, n. 4, p. 434-440, 1955.

MOODY, L. F. Friction Factors for Pipe Flow. **Trans. of the ASME**, v. 68, n. 8, p. 671-684, 1944. Citado por PERRY, R. H.; GREEN, D. W. **Perry's Chemical Engineers' Handbook**. 7th ed. New York: McGraw-Hill, 1999.

NASCIMENTO, C. R. Reologia e Reometria Aplicadas ao Estudo de Polpas Minerais. Rio de Janeiro, Brasil: CETEM/MCT, 2008. 53 pp. (Séries Rochas e Minerais Industriais, v. 11).

NGUYEN, Q. D.; BOGER, D. V. Measuring the flow properties of yield stress fluids. **Annual Review Fluid Mech.**, v. 24. pp. 47- 88, 1992

OLIVEIRA, R. P. Lei do Atrito para Escoamento Turbulento de Fluidos Não-Newtonianos utilizando os Modelos Reológicos de Herschel-Bulkley e Mizrari-Berk. 2007. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) - Centro Tecnológico da Universidade Federal do Pará. Belém, 2007 PAWLIK, M.; LASKOWSKI, J. S. Evaluation of flocculants and dispersants through rheological tests. In: Polymers in Mineral Processing. **38th Annual Conference of Metallurgists of CIM**, Quebec, Canada, p. 541-555, 1999.

PINTO, Carlos de Souza. **Curso Básico de Mecânica dos Solos**. São Paulo: Oficina de Textos, 2000.

PORTAL METALICA. Disponível em: http://www.metalica.com.br/sistema-minasriomaior-mineroduto-do-mundo-no-brasil. Acessado em 20/11/2013.

POWERS, M. C. **A new roundness scale for sedimentary particles**. Journal of Sedimentary Petrology. V. 23, p. 117-119, 1953.

QUARESMA, J. N. N. **Relatório Técnico Projeto**: Experimentos e Simulação em Escoamentos Não-Newtonianos. Faculdade de Engenharia Quimica - Centro Tecnológico da Universidade Federal do Pará. Belém, 2007

REIS, I. N. S. F. Influência da Granulometria nas Propriedades Reológicas da **Polpa de Bauxita após Beneficiamento**. Dissertação (Mestrado em Engenharia Quimica), Universidade Federal do Pará. Belém, 2015.

ROCHA, L. L. V. **Modelagem do Reinicio do Escoamento de um Fluido de Perfuração Tixotrópico**, Exame de Qualificação ao Mestrado – Engenharia Mecânica e de Materiais, Universidade Tecnológia Federal do Paraná, 2010.

RODRIGUES, A. C. V. L. Influência da Granulometria no Comportamento Reológico de Polpa de Bauxita na Presença de Aditivo Modificador de Superficie. Trabalho de Conclusão de Curso – TCC (Graduação em Engenharia Quimica), Universidade Federal do Pará. Belém, 2015.

ROMA, W. N. L. Fenômenos de Transporte para Engenharia. 2^a. Edição. São Carlos. Rima Editora, 2006. v. 700. 288 p.

SAMPAIO, C. H.; TAVARES, L. M. M. **Beneficiamento Gravimétrico**, 1^a ed.; Editora UFRGS, 2005, 603p.

SCHILLER, R. E.; HERBICH, P. E. Sediment Transport in Pipes, Handbook of Dredging. New York, 1991.

SCHRAMM, G. Reologia e Reometria: Fundamentos Teóricos e Práticos. São Paulo: Artliber Editora, 2006.

SCHULTZ, N. F. Measurement of surface areas by permeametry. International Journal of Mineral Processing; V. 1, p. 65-79, 1974.

SELLGREN, A. WILSON, K. C. Validation of a Four-Component Pipeline Friction-Loss Model. Organization: **The Southern African Institute of Mining and Metallurgy**, Pages 12. Publication Dute: January 1, 2007 SHAVER, R. G.; MERRIL, E. W. Turbulent Flow of Pseudoplastic Polymer Solutions in Straight Cylindrical Tubes. **AIChE J**., v. 5, n. 2, p. 181-188, 1959.

SKELLAND, A. H. P. Non-Newtonian Flow and Heat Transfer. New York: John Wiley & Sons, 1967.

SOFRÁ, F.; BOGER, D. V. Environmental rheology for waste minimisation in the minerals industry. **Chemical Engineering Journal**, v. 86, n. 3, p. 319 – 330, 2002

SOUZA PINTO, T. C. Modelagem da velocidade crítica de transporte de polpas minerais contendo partículas grossas/ T.C. Souza Pinto. Ed Ver. São Paulo, 2012. 190p.

SOUZA PINTO, T. C.; LIMA, O. A.; LEAL FILHO, L. S. Sphericity of Apatite Particles Determined by Gas Permeability Through Packed Beds. **Minerals and Metallurgical Processing Journal**, V. 26, n[.] 2, p. 105-108, 2009.

THOMAS, D. G. Transport characteristics of suspension. Journal of Colloid Science; v. 7, p. 423-430, 1964.

USUI, H.; HISHIMOTO, K.; SUZUKI H. Non-Newtonian viscosity of dense alurries prepared by spherical particles. **Chemical Engineering Science**, v. 56, p. 2979-2989, 2001.

VALADÃO, G. E. S. ARAUJO, A. C., Organizadores. Introdução ao tratamento de minérios. Belo Horizonte: Editora UFMG, 2007.

WASP, E. J. KENNY, J. P., & GANDHI, R. L. **Solid-Liquid Flow Slurry Pipeline Transportation**. São Francisco: Trans Tech Publications, 1977.

WASP, E. J.; SLATTER, P. Deposition velocities for small particles in large pipes, **12th International Conference on Transport & Sedimentation of Solids Particles**, Prague, Czech Republic, 2004.

WEIR. **Dimensionamento e Seleção de Bombas de Polpa. Curso Bombeamento.** Rev.1, Belo Horizonte, ECM. 2006.

WELTMANN, R. N. Friction Factors for Flow of Non-Newtonian Materials in Pipelines. Ind. Eng. Chem., v. 48, n. 3, p. 386-387, 1956.

WHITE, F. M. Mecânica dos Fluidos. 6^a ed. Porto Alegre: AMGH, 2011. 880 p.

WILLS, B. A. Mineral Processing Technology – **An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery**, 7^a edição. Editor Tim Napier-Munn. Publication by Butterworth-Heinemann (Elsevier Imprint), 2008, 444p.

WILSON, K. C. ADDIE, G. R.; SELLGREN, A. and CLIFT, R. Slurry Transport Using Centrifugal Pumps, (2nd ed.), Blackie, London, U. K., 1977.

APÊNDICE A – RESULTADOS EXPERIMENTAIS DO LOOP DE BOMBEAMENTO

Mineroduto - Aquisição de Dados de Potência										
Amostra:		Água - Calibração do Loop de Bombeamento								
Massa Minério										
Massa Água:										
Teor Sólidos:										
$k = \frac{P}{\sqrt{3}.V.I} = \frac{1}{\sqrt{3}}$	³⁷⁵⁰ .220.14 ~ 0,703	B N _{ir}	$\frac{1}{1} \frac{1}{1} \frac{1}$	60 τNFd	d = 0	,41 m				
$\eta_{\%} = rac{P}{\sqrt{3.V.I.cos \varphi}}$	$=\frac{k}{\cos\varphi}$	P _{el}	$e_{trica} = \sqrt{3}$.V.I.cosq	$\rho.\eta = $	3.V.I.k				
Frequência (Hz)	Rotação (RPM)	Velocidade	Vazão	Toma	das de Pr	essão (kg	f/cm²)			
[P002]	Tacômetro	(m/s)	(m ^{3/} h)	P1 (x	10 ⁻³)	P2 (x	: 10 ⁻³)			
15,00	870	1,2	8,41	8	22	8	16			
22,90	1.322	2,01	14,25	100	125	92	119			
27,00	1.552	2,41	17,05	169	187	156	181			
29,00	1.660	2,60	18,40	199	226	185	219			
31,20	1.776	2,79	19,73	232	264	220	252			
39,90	2.227	3,52	24,85	385	433	375	409			

A.1 – CALIBRAÇÃO DA UNIDADE COM ÁGUA

		Min	eroduto - /	Aquisiçâ	io de Da	dos de	Potênc	ia	
Amostra:			Gro	ssos Pa	radomina	as (+	48# a	+150 #)	
Massa Minério:					- 3-			,	
Massa Água:									
Teor Sólidos:									
D	275	.							
$k = \frac{P}{R}$		$- \sim 0.7$	'03	N	immonio	_ =	f.60	d =	= 0.41 m
√3.V.I	√3.220	.14			inverso	/	,		-,
				_					
				P_n	nec ânic	a =	$2\pi NF$	'd	
$n_{\alpha} = -$	P=	k		Р	11.	_	$\sqrt{3}V$	$I \cos(n) =$	$\sqrt{3} V I k$
$10^{-1} \sqrt{3.V}$.I.cosφ	cosφ		1	eletrica		V 5. V .	π.εοσφ.η –	v 5. v . 1. k
	Rotação			-		~ (1	et 25	0005014080	
Frequência (Hz)	(RPM)	Velocidade	Vazão	Tomad	las de Pré	essao (k	(gt/cm⁻)	OBSERVAÇÃO	AMOSTRAGEM
[P002]	Tacômetro	(m/s)	(m ³ /h)	P1()	(10 ³)	P2 (x 10 ³)	VISUAL (V _C)	CALHAS $(1,20 \times V_{\rm C})$
				Cw	= 60%		<u> </u>		
15,30	875	1,00	7,17	24	34	15	29		
16,30	930	1,09	7,88	33	43	25	37		
17,80	1.014	1,22	8,75	54	68	46	59	Velocidade critica	
20,80	1.170	1,51	10,55	93	113	81	100	Coleta amostras	com calhas (1,20Vc)
23,50	1.320	1,71	12,15	139	159	120	147		
25,40	1.420	1,87	13,39	176	202	162	182		
27,80	1.545	2,11	14,85	223	245	204	225		
31,00	1.700	2,33	10,40	202	310	200	290		
37.10	1.020	2,51	19.00	302	423	368	400		
07,10	1.000	2,10	10,00	002	420	000	400		
		•		Cw	= 50%		-		·
15,00	860	1,03	7,25	12	19	5	17		
15,10	870	1,15	8,10	23	41	17	36	Velocidade critica	
18,70	1.074	1,38	9,85	44	64 07	40	53		
21,00	1.200	1,00	12.88	111	97	00	117		
25,30	1.520	2 00	12,00	149	120	133	162		
28,10	1.575	2,00	15.65	192	219	173	205		
31,00	1.720	2,41	17,30	239	259	215	246		
33,90	1.860	2,62	18,50	286	307	255	297		
				Cw	= 40%				
14,40	830	1,00	7,08	11	20	5	19		
15,60	900	1,12	8,00	17	23	11	20	Velocidade critica	
17,40	1.000	1,31	9,30	65	75	56	72		
19,50	1.120	1,55	10,80	100	115	90	109		
21,50	1.225	1,68	13.45	139	148	120	143		
24,00	1.370	2 11	13,43	224	203	210	2/3		
28,80	1.430	2,11	16.30	285	313	267	303		
31.40	1.750	2.50	17.35	341	377	325	363		
34,10	1.930	2,71	18,90	323	360	312	338		
· ·	1	<u> </u>	i		- 20%/		1		
14.45	000	1.00	740	C _W		4	40	1	
14,10	870	1,00	7.85	9 17	26	13	23	Velocidade critica	
16 80	970	1,10	9,29	38	49	32	45		
19.30	1,120	1,55	10.96	68	85	62	78		1
21,30	1.220	1,71	12,10	92	112	87	102		
23,60	1.350	1,92	13,70	142	147	125	145		
25,70	1.460	2,11	14,94	166	189	152	182		
28,50	1.620	2,35	16,50	219	244	200	238		
31,00	1.740	2,53	17,85	267	293	248	285		

A.2 – ENSAIOS DA FRAÇÃO DE GROSSOS

		Mir	neroduto -	Aquisiç	ão de D	ados d	e Potên	cia	
Amostra:			Fii	nos Para	gomina	s (-15	0#a-	400 #)	
Massa Minério									
Massa Água:									
Teor Sólidos:								î	1
P P	3750	0.7	0.2	N			£ 60	d -	0.41 m
$\kappa = \frac{1}{\sqrt{3.V.I}}$	√3.220	$\frac{1}{14} \sim 0,7$	03	IN,	inversoi	r =	J.60	u -	0,41 m
				Pm	nec ânici	, =	$2\pi NF$	d	
						ı			
n = -	p	<u>k</u>		D		- 1	$\sqrt{2}$ V	$L \cos(n n -$	$\sqrt{2}VIb$
$7\% - \sqrt{3.V.}$.cosφ —	cosφ		16	elétrica		v J. v .	$1.003\psi.\eta =$	y J. V. I. K
	Rotação		\ <i>1</i> ~	Tamad	laa da Dr		of (am ²)	OBSERVAÇÃO	
Frequencia (HZ)	(RPM)	Velocidade (m/s)	vazao (m ^{3/} h)	Tomac			gi/cm)	VISUAL (V _C) -	
[1 002]	Tacômetro	(11/3)	(11 11)	P1 (x	(10 ⁻³)	P2 ()	x 10 ⁻³)	IMPOSSIVEL	UALI IAU
	.	I		Cv	v = 60%		•	1	
21,30	1.230	0,66	4,53	217	222	172	178	1 200204240	1 220244000
22,10	1.200	0,70	5,44 6 11	233	239	104	193	1,266304348	1,238341965
22,60	1.310	0,90	6,48	247	255	199	202		
23,70	1.360	1,35	9,55	293	302	234	241	Coleta amos	tras com calhas
24,65	1.400	1,55	10,17	324	333	262	270		
25,80	1.470	1,58	10,60	335	340	2/1	2/6		
27,30	1.545	2,05	14,47	408	410	350	343		
29,20	1.635	2,26	16,04	453	462	377	387		
30,50	1.701	2,37	16,81	480	487	401	412		
	<u>.</u>			Cv	v = 50%		<u>.</u>	ļ.	
17,40	1.010	0,60	4,75	116	122	78	90		
17,90	1.040	0,75	5,52	120	129	83	88		
17,90	1.040	1,13	8,09	155	162	108	116		
18,40	1.070	1,24	8,73	160	165	110	118		
19,00	1.090	1,30	9,64	173	179	121	128		
20.00	1.120	1,4	10,40	100	196	136	139		
21,00	1.210	1,65	11,68	201	210	146	150		
22,60	1.290	1,88	13,33	232	245	173	179		
23,45	1.340	1,96	13,79	254	261	193	192		
				Cv	v = 40%			÷	
12,50	730	0,73	5,23	28	41	10	15		
13,15	770	0,86	6,14	38	44	10	21		
13,90	810	0,97	6,91	48	49	15	25		
14,50	845 805	1,06	7,49	55 67	59	22	30		
16.00	930	1,17	9,17	80	87	43	52		
16,50	958	1,38	9,81	85	97	46	60		
17,20	1.000	1,47	10,43	97	109	57	69		
17,70	1.030	1,53	10,86	107	117	67	74		
20,00	1.150	1,66	11,72	144	160	97	117		
				Cv	v = 30%				
12,50	730	0,70	5,83	8	12	1	5		
13,30	775	0,94	6,64	11	22	0	10		
14,20	825	1,05	7,44	22	35	7	21		
15,10	088	1,24	8,83 0 77	35	50 63	16 20	31		
17.90	1,035	1,30	10.34	80	99	54	75		
19,00	1.100	1,58	11,14	111	119	79	96		
19,80	1.140	1,65	11,71	113	135	88	101		
20,70	1.190	1,75	12,36	127	154	99	118		
22,30	1.280	1,90	13,46	164	181	127	147		

A.3 – ENSAIOS DA FRAÇÃO DE FINOS

		Mir	neroduto -	Aquisiç	ão de D	ados d	e Potên	cia				
Amostra:			Con	nposta P	aragomi	nas (·	+48# a	-400 #)				
Massa Minério	Composição em massa seca: 31,05% grossos e 68,95% finos											
Massa Agua:												
Teor Sólidos:			-	i			-	î	î			
P P	3750	0.7	0.2	N			£ (0	d -	0.11 m			
$\kappa = \frac{1}{\sqrt{3.V.I}}$	√3.220	$\frac{-}{14} \sim 0,7$	03	IN	inversoi	. =	J.00	u –	0,41111			
•												
				P_n	nec ânico	, =	$2\pi NF$	d				
						-						
$n_{0\ell} = -$	=			P	1644100	= -	$\sqrt{3}.V.$	$L\cos\omega.n =$	$\sqrt{3}$. V. I. k			
$\sqrt{3.V.}$.cosφ	cosφ		- 6	elerrica				Vervient			
	Rotação	Velocidade (m/s)	Vazão (m ^{3/} h)	Tomadas de Pre		essão (kgf/cm ²)		OBSERVAÇÃO VISUAL (V _C) - IMPOSSIVEL	AMOSTRAGEM CALHAS			
Frequência (Hz)	(RPM)											
[P002]				P1 (x 10^3) P2 (x 10^3)			× 10 ⁻³)					
	Tacomeno	II		C = 60%		12(10)						
19,50	1.120	0,65	4,60	128	139	106	115					
20,20	1.160	0,75	5,73	138	157	119	124					
21,10	1.220	1,04	7,37	153	168	126	132					
21,70	1.250	1,15	7,95	167	178	132	142	Coleta amos	tras com calhas			
22,00	1.260	1,21	8,75	182	193	145	154					
23,00	1.310	1,51	10,82	197	217	152	167					
24,30	1.370	1,63	11,75	214	226	162	1/8					
25,00	1.420	1,73	13.50	220	243	187	199					
28.30	1.590	2.28	16,00	271	293	198	223					
,	1		,	C.	= 50%		1	1				
15.00	860	0.88	6.20	56	67	42	48	[l			
15,70	910	1.00	7.09	69	87	53	61					
16,35	950	1,10	7,69	91	96	60	79					
17,00	980	1,21	8,85	98	110	71	82					
17,60	1.020	1,32	9,35	115	118	78	94					
18,10	1.040	1,40	9,96	121	128	86	97					
18,90	1.080	1,51	10,52	136	142	98	109					
20.50	1.130	1,01	12 12	165	171	112	134					
21,30	1.220	1,81	12,82	185	193	137	148					
· ·				C	- 40%			1				
13.20	770	0.02	6.53	υ 11	v - 40 /0	3	7		· · · · · · · · · · · · · · · · · · ·			
13,20	810	1.01	7.15	16	27	2	14					
14,80	860	1,20	8,47	32	39	11	24					
15,50	910	1,31	9,27	48	51	23	34					
17,40	1.010	1,39	9,83	62	67	37	46					
18,60	1.070	1,51	10,73	91	97	59	76					
19,40	1.120	1,59	11,28	101	118	71	91					
20,10	1.150	1,00	11,74	135	129	04 97	102					
21,00	1.210	1,75	12,57	100	141	51	112					
	r	, , , , , , , , , , , , , , , , , , , ,		Cv	_v = 30%			r	r			
12,90	750	0,91	6,48	8	11	3	8					
13,50	/80	1,06	7,49 8 34	11	14	4	11					
15.80	920	1,10	8,85	28	38	18	32					
16.80	970	1,35	9,58	43	52	30	46					
17,70	1.020	1,44	10,20	56	67	43	58					
18,90	1.090	1,56	11,10	74	85	58	75					
19,90	1.150	1,67	11,77	89	99	72	86					
20,90	1.200	1,75	12,42	104	115	87	98					

A.4 – ENSAIOS DA FRAÇÃO COMPOSTA

APÊNDICE B – RESULTADOS EXPERIMENTAIS DA DETERMINAÇÃO DA ESFERICIDADE POR PERMEAMETRIA

B.1 – ENSAIOS POR PERMEAMETRIA

Fator de Forma (esfericidade) por Permeametria											
A											
Amostra: E	sauxita - Paragomi	nas (+150#)									
Fração gra	nuiometrica: + 150	Л	Temperatura do ar (°C): 20								
Fluido Ma	nométrico: Agua		Diametro do funil (cm): 4,85								
Hiniciai (d	.m): 0,0		Altura do leito (cm): 2,33								
Numero u	o Ensalo: 1			Data. 20/05/10							
Vazão	Bra	anco (Sem sólido	os)		Com sólidos						
(L/min)	ΔH_1 (cm)	ΔH_2 (cm)	ΔH_3 (cm)	ΔH ₁ (cm)	ΔH_2 (cm)	ΔH_3 (cm)					
0,0	0,00	0,10	0,10	0,00	0,10	0,10					
1,0	0,45	1,00	0,80	1,40	1,90	1,70					
1,5	0,70	1,40	1,10	2,20	2,60	2,40					
2,0	0,90	1,80	1,50	2,70	3,30	3,10					
2,5	1,30	2,20	1,90	3,60	3,95	3,80					
3,0	1,80	2,60	2,40	4,40	4,80	4,60					
3,5	2,30	3,00	2,80	5,20	5,60	5,30					
4,0	2,70	3,40	3,30	5,90	6,40 7.10	6,10					
4,5 5.0	3,80 4 30	4,00	3,00	0,70	7,10 8,20	0,90 7 70					
3,0	4,00	4,00	4,00	1,15	0,20	1,10					
Amostra: í	Bauxita - Paragomi	inas (-150#)	Massa do sólido (Massa do sólido (g): 30,99							
Fração gra	nulométrica: - 150)#	Temperatura do a	ar (°C): 20							
Fluido Ma	nométrico: Mercú	rio	Diâmetro do funi	Diâmetro do funil (cm): 4.85							
H inicial (c	:m): 0.3		Altura do leito (cm): 2.33								
Número d	o Ensaio: 2			Data: 20/05/16							
ivaniero a	CENSUIC. 2			Dutu: 20/03/10							
Vazão	Bra	anco (Sem sólido	os)		Com sólidos						
(L/min)	ΔH_1 (cm)	$\Delta H_2 (cm)$	$\Delta H_3 (cm)$	ΔH₁ (cm)	$\Delta H_2 (cm)$	ΔH_3 (cm)					
0,0	0,30	0,30	0,30	0,30	0,40	0,40					
1,0	0,35	0,40	0,35	2,70	3,60	2,80					
1,5	0,35	0,45	0,35	4,20	4,70	4,20					
2,0	0,40	0,50	0,40	4,90	5,20	5,10					
2,5	0,40	0,55	0,40	5,30	5,40	5,40					
3,0	0,45	0,60	0,45								
3,5	0,50	0,65	0,50								
4,0	0,50	0,70	0,55								
4,5	0,70	0,70	0,70								
5,0	0,80	0,80	0,80								
Amostra: E	Bauxita - Paragomi	inas (Composta)		Massa do sólido (g): 36,53							
Fração gra	nulométrica: Com	posta		Temperatura do ar (°C): 20							
Fluido Ma	nométrico: Mercú	rio		Diâmetro do funil	Diâmetro do funil (cm): 4,85						
H inicial (c	;m): 0,3			Altura do leito (cr	Altura do leito (cm): 2,33						
Número d	o Ensaio: 3			Data: 20/05/16	Data: 20/05/16						
Vazão	Br	anco (Sem sólido	os)	Com sólidos							
(L/min)	ΔH_1 (cm)	ΔH_2 (cm)	ΔH ₃ (cm)	ΔH ₁ (cm)	ΔH_2 (cm)	ΔH_3 (cm)					
0,0	0,30	0,30	0,30	0,30	0,30	0,30					
1,0	0,35	0,40	0,35	1,40	2,20	2,20					
1,5	0,35	0,45	0,35	2,20	3,10	3,00					
2,0	0,40	0,50	0,40	3,20	4,00	3,80					
2,5	0,40	0,55	0,40	4,20	4,50	4,40					
3,0	0,45	0,60	0,45	4,60	4,70	4,70					
3,5	0,50	0,65	0,50								
4,0	0,50	0,70	0,55								
4,5	0,70	0,70	0,70								
5.0	0.80	0.80	0.80								

B.2 – GRÁFICOS DOS RESULTADOS DA PERMEAMETRIA
						RE	SULTADO	OS DA MO	DELAG		ÓGICA	POLPA	GROSSO	os			
		1 (, (, 3)			T		Power Law			Bingham			Hersche	l-Bulkley		MELHOR	000000000
POLPA	C _w (%)	d _p (t/m)		рн	Triplicata	к	n	R ²	τ ₀	η	R ²	τ ₀	к	n	R ²	AJUSTE	OBSERVAÇAO
					T1	0,0400	0,8082	0,7443	-0,3965	0,0160	0,9294	-0,3965	0,0143	0,9623	0,7567	Power Law	
				7,30	T2	0,0023	1,2974	0,9010	-0,5174	0,0145	0,9178	-0,5174	0,0020	1,7041	0,8768		Melhor ajuste com índice de
	30	1,240			Т3	0,0005	1,5336	0,9913	-0,9445	0,0154	0,9837	-0,9445	0,0388	0,8300	0,9415		comportamento h<1, confirmando a
			Média	7,30		0,014	1,213	0,879	-0,619	0,015	0,944	-0,619	0,018	1,165	0,858		pseudoplástico
			D. Padrão			0,000	0,370	0,125	0,288	0,001	0,035	0,288	0,019	0,471	0,094		
					T1	0,0036	1,2813	0,8977	0,0133	0,0185	0,8707	0,0133	0,0034	1,2914	0,8984		
				7,20	T2	0,0128	1,0170	0,9694	0,0544	0,0142	0,9653	0,0544	0,0197	0,9421	0,9618		
	40	1,340			Т3	0,1711	0,5426	0,7768	-0,1665	0,0147	0,9641	-0,1665	0,0125	1,0210	0,9695	Power Law	Idem
			Média	7,20		0,063	0,947	0,881	-0,033	0,016	0,933	-0,033	0,012	1,085	0,943		
			D. Padrão			0,094	0,374	0,097	0,117	0,002	0,054	0,117	0,008	0,183	0,039		
GROSSOS					T1	0,3736	0,4422	0,4316	2,1920	0,0088	0,3687	2,1920	0,3213	0,3232	0,0266	Power Law	
				7,10	T2	0,0020	1,3035	0,9759	-1,5200	0,0175	0,9480	-1,5200	0,0394	0,8562	0,9401		
	50	1,420			Т3	0,0006	1,7807	0,9634	-7,5697	0,0808	0,9798	-7,5697	0,0774	1,0071	0,9773		Idem
			Média	7,10		0,125	1,175	0,790	-2,299	0,036	0,766	-2,299	0,146	0,729	0,648		
			D. Padrão			0,215	0,678	0,311	4,023	0,032	0,281	4,927	0,153	0,359	0,538		
					T1	0,1240	0,7791	0,5209	4,3077	0,0212	0,3999	4,3077	2,2404	0,1237	0,0019		
				7.00	T2	26,7620	0,1111	0,1049	39,2140	0,0448	0,1596	39,2140	0,7806	0,4018	0,1199		
	60	1 560		7,00	Т3	2,5221	0,4113	0,6449	7,8853	0,0662	0,7667	7,8853	0,4299	0,6507	0,7026	Power Law	Idem
	50	1,300			T4	3,1949	0,3590	0,2762	7,2096	0,0727	0,5460	7,2096	0,7054	0,5428	0,2460		idem
			Média	7,00		8,1508	0,4151	0,3867	14,6542	0,0512	0,4681	14,6542	1,0391	0,4298	0,2676	l	
			D. Padrão			12,4773	0,2757	0,2424	16,4466	0,0233	0,2550	16,4466	0,8149	0,2281	0,3067		

						RE	SULTAD	OS DA M	ODELAC	SEM RE	OLÓGIC	A - POLF	PA FINOS				
							Power Law			Bingham			Herschel	-Bulkley		MELHOR	~
POLPA	C _w (%)	d _p (t/m ³)		рН	Triplicata	к	n	R ²	$ au_0$	η	R ²	$ au_0$	к	n	R ²	AJUSTE	OBSERVAÇAO
					T1	0,1124	0,7197	0,9473	0,4560	0,0220	0,9654	0,4560	0,0625	0,8093	0,9616		
					T2p	0,2315	0,5650	0,9774	1,4168	0,0156	0,9946	1,4168	0,1249	0,6599	0,9826	Bingham	
				7,50	T2	0,0837	0,7938	0,8715	-0,7127	0,0310	0,8104	-0,7127	0,1712	0,6852	0,8444		Melhor ajuste das curvas de fluxo
	30	1,212			Т3	0,1392	1,5336	0,7493	4,3332	0,0189	0,6165	4,3332	1,0706	0,3217	0,8171		existência de tensão inicial de
					T4	0,0072	1,1892	0,8297	1,0668	0,0165	0,6937	1,0668	5,00E-06	2,3755	0,6646		escoamento
			Média	6,46		0,115	0,960	0,875	1,312	0,021	0,816	1,312	0,286	0,970	0,854		
			D. Padrão			0,082	0,395	0,092	1,873	0,006	0,165	1,873	0,443	0,806	0,128		
					T1	1,3141	0,4149	0,9667	5,9678	0,0256	0,9988	5,9678	0,0163	1,0820	0,9937	Bingham	
				7,40	T2	1,0160	0,4443	0,9665	5,0279	0,0249	0,9943	5,0279	0,0173	1,0666	0,9900		Melhor ajuste das curvas de fluxo
	40	1,320			T3	1,1730	0,4264	0,9659	5,5408	0,0249	0,9941	5,5408	0,0153	1,0879	0,9915		e de viscosidade, indicando existência de tensão inicial de
FINOS			Média	6,62		1,168	0,429	0,966	5,512	0,025	0,996	5,512	0,016	1,079	0,992		escoamento
FINUS			D. Padrão			0,149	0,000	0,000	0,471	0,000	0,003	0,471	0,001	0,011	0,002		
					T1	4,4997	0,3536	0,9683	17,0940	0,0515	0,9810	17,0940	0,0131	1,2467	0,9623	Bingham	
				7,30	T2	5,8994	0,3088	0,9664	19,1390	0,0465	0,9805	19,1390	0,0107	1,2626	0,9598		Melhor ajuste das curvas de fluxo
	50	1,410			Т3	2,9079	0,4266	0,9055	13,3350	0,0641	0,9792	13,3350	0,0870	0,9415	0,9529		e de viscosidade, indicando existência de tensão inicial de
			Média	6,80		4,436	0,363	0,947	16,523	0,054	0,980	16,523	0,037	1,150	0,958		escoamento
			D. Padrão			1,497	0,059	0,036	2,944	0,009	0,001	2,944	0,043	0,181	0,005		
					T1	0,0355	1,4748	0,7130	46,2140	0,3209	0,7631	46,2140	0,8877	0,8390	0,9045		
				7,00	T2	13,2490	0,4296	0,9639	70,1040	0,2572	0,9352	70,1040	0,0026	1,8186	0,8864	Bingham	Melhor ajuste das curvas de fluxo
	60	1,531			T3	0,9448	0,3426	0,9488	89,6980	0,2109	0,8509	89,6980	0,0072	1,5976	0,7868		e de viscosidade, indicando existência de tensão inicial de
			Média	6,94		4,743	0,749	0,875	68,672	0,263	0,850	68,672	0,299	1,418	0,859		escoamento
			D. Padrão			7,380	0,630	0,141	21,777	0,055	0,086	21,777	0,510	0,514	0,063		

						R	ESULTA	DOS DA	MODEL	AGEM R	EOLÓGI	CA - POL	РАСОМ	POSTA			
POLPA	C (%)	d (h /m ³)		~	Triplicato		Power Law			Bingham			Hersche	l-Bulkley		MELHOR	OBSERVAÇÃO
POLPA	C _W (%)	a _p (t/m)		рп	mplicata	к	n	R ²	τ0	η	R ²	τ ₀	к	n	R ²	AJUSTE	UBSERVAÇÃO
					T1	0,0030	1,6199	0,9871	-1,4993	0,0192	0,9254	-0,1499	0,0720	0,7554	0,8721		
				7.60	T2	0,0018	1,3452	0,9796	-0,8999	0,0168	0,9720	-0,8999	0,0459	0,8174	0,9454		
	30	1 218		1,00	Т3	0,0007	1,5011	0,9969	-1,2359	0,0175	0,9685	-1,2359	0,0619	0,7678	0,9185		Melhor ajuste com indice de comportamento
		1,210			T4	0,0117	0,9774	0,9890	-0,0595	0,0110	0,9931	-0,0595	0,0161	0,9227	0,9864	Power Law	fluxo pseudoplástico
			Média	6,83		0,004	1,361	0,988	-0,924	0,016	0,965	-0,586	0,049	0,816	0,931		
			D. Padrão			0,005	0,279	0,007	0,626	0,004	0,028	0,497	0,021	0,066	0,042		
					T1	0,0577	0,8569	0,9793	0,1645	0,0255	0,9725	0,1645	0,0453	0,8952	0,9822		
		1,325		7,40	T2	0,1414	<mark>0,6380</mark>	<mark>0,9874</mark>	0,0155	0,9915	0,9937	0,0155	0,1382	0,6416	0,9875	Power Law	Melhor ajuste com índice de comportame
	40	1,325			T3	0,0394	0,8950	0,9673	-0,2640	0,0235	0,9541	-0,2640	0,0603	0,8280	0,9603		n<1, confirmando a polpa mineral como um
			Média	6,70		0,080	0,797	0,978	-0,028	0,347	0,973	-0,028	0,081	0,788	0,977		nuxo pseudopiastico
			D. Padrão			0,054	0,139	0,010	0,218	0,558	0,020	0,218	0,050	0,131	0,014		
COMPOSTA					T1	0,3212	0,6092	0,9701	2,6132	0,0251	0,9806	2,6132	0,0125	1,1249	0,9627		
				7,30	T2	0,4153	0,5896	0,9472	2,8815	0,0300	0,9942	2,8815	0,0387	0,9523	0,9665		Malharaiusta das cuntas da fluxa a da
	50	1,413			T3	0,2114	0,6693	0,9850	1,8983	0,0252	0,9866	1,8983	0,0140	1,1064	0,9556		viscosidade, indicando existência de tensão
					T4	0,9645	0,6293	0,9645	1,9404	0,0249	0,9965	1,9404	0,0334	0,9464	0,9929	Bingham	inicial de escoamento
			Média	6,67		0,478		0,967	2,333	0,026	0,989	2,333	0,025	1,033	0,969		
			D. Padrão			0,335		0,016	0,491	0,002	0,007	0,491	0,013	0,096	0,016		
					T1	2,7887	0,4341	0,9767	14,2810	0,0591	0,9746	14,2810	0,0066	1,3946	0,9293		
				7,10	T2	5,6919	0,3113	0,8681	17,7380	0,0510	0,9798	17,7380	0,0897	0,8937	0,9125	Bingham	Melhor aiuste das curvas de fluxo e de
	60	1,543			T2	3,9711	0,3829	0,9396	17,1300	0,0566	0,9329	17,1300	0,0030	1,5238	0,8837		viscosidade, indicando existência de tensão
					13	3,7121	0,3603	0,9401	14,2660	0,0465	0,9650	14,2660	0,0065	1,5190	0,8771		inicial de escoamento
			Média	6,92		4,041	0,372	0,931	15,854	0,053	0,963	15,854	0,026	1,333	0,901		
	I		D. Padrão			1,212	0,051	0,045	1,842	0,006	0,021	1,842	0,042	0,299	0,025		

APÊNDICE F – CILINDRO COAXIAL E SUAS DEFINIÇÕES

1) Definições: $T = F. r_i$ $A = 2\pi r_i L$ $\tau = \frac{F}{A} = \frac{T}{2\pi (r_i)^2 L}$

2) Medidas do sensor SV1:

- $r_i = 10,1 \text{ mm} = 0,0101 \text{ m}$
- L = 61,4 mm = 0,0614 m

3) Equação para tensão no SV1:

$$\tau = \frac{T}{2\pi r_i^2 L} \text{ (equação geral)}$$
(1)
$$\tau = \frac{T}{2\pi r_i^2 L. f} \text{ (equação específica)}$$
(2)

4) Fator de torque:

$$f = \frac{0.01}{2\pi r_i^2 L}$$
(Manual Haake) (3)

5) Torque para SV1:

A partir de (2) e (3):

$$\tau = \frac{T}{2\pi r_i^2 L. f}$$

$$\tau = \frac{T}{2\pi r_i^2 L. \frac{0.01}{2\pi r_i^2 L}} \quad \therefore \quad \tau = \frac{T}{0.01} \quad \therefore \quad T = 0.01\tau$$
(4)

6) Desvio para as medidas do SV1

$$\delta r_i = 0,025 \ mm = 0,000025 m$$

(obs. Experimentais do equipamento)

 $\delta L = 0,5 \ mm = 0,0005 m$

(obs. Experimentais do equipamento)

 $\delta T = 0,015 Ncm = 0,00015Nm$

(desvio do Torque: $T_{máx} = 0.5\% \text{ x 3Ncm}) \rightarrow \text{manual HAAKE}$

7) A tensão e suas variáveis influentes:

$$\tau = \frac{T}{2\pi i L}$$
$$\frac{\partial \tau}{\partial T} = \frac{1}{2\pi r_i^2 L}$$
$$\frac{\partial \tau}{\partial r_i} = \frac{-2T}{2\pi r_i^3 L}$$
$$\frac{\partial \tau}{\partial L} = \frac{-T}{2\pi r_i^2 L^2}$$

8) Equação para propagação da incerteza:

$$I = \frac{\delta \tau}{\mathrm{T}} = \sqrt{\left(\frac{\delta T}{\mathrm{T}}\right)^2 + 4 \cdot \left(\frac{\delta r_i}{r_i}\right)^2 + \left(\frac{\delta L}{L}\right)^2} X 100\%$$

9) Gráficos dos ensaios

	FR/		limites de	erro (%)			
TAXA	TENSÃO	TORQUE	INCERTEZA	l+	I-	positivo	negativo
550	8,581	0,086	0,9689	8,6646	8,4983	8,3145	8,3145
400	4,938	0,049	1,0002	4,9876	4,8888	4,9394	4,9394
325	3,819	0,038	1,0308	3,8580	3,7792	3,9361	3,9361
250	2,526	0,025	1,1229	2,5543	2,4975	2,8363	2,8363
200	3,467	0,035	1,0466	3,5030	3,4305	3,6284	3,6284
120	7,049	0,070	0,9765	7,1175	6,9798	6,8828	6,8828
40	1,536	0,015	1,3645	1,5570	1,5150	2,0959	2,0959
	Incerteza	média (%) =	1,0729				
D	esvio padrão d	a incerteza =	0,1387				
10,0	v = 0.2725×0.44	22	I	I			
Tensão	R ² = 0,4316	• Poté	ncia — Potênci	a (Potência)			
1,0 + 10		100	Тах	ca (1/s) 1000			

	F	RAÇÃO FINOS	- 50% SÓLIDO	s		limites	de erro
TAXA	TENSÃO	TORQUE	INCERTEZA	+	ŀ	positivo	negativo
550	44,332	0,443	0,9536	44,7550	43,9094	0,4228	0,4228
400	37,058	0,371	0,9539	37,4117	36,7047	0,3535	0,3535
325	35,737	0,357	0,9539	36,0776	35,3958	0,3409	0,3409
200	29,226	0,292	0,9544	29,5050	28,9472	0,2789	0,2789
150	24,038	0,240	0,9550	24,2675	23,8083	0,2296	0,2296
120	23,788	0,238	0,9551	24,0151	23,5607	0,2272	0,2272
80	20,541	0,205	0,9558	20,7372	20,3446	0,1963	0,1963
40	18,018	0,180	0,9566	18,1906	17,8458	0,1724	0,1724
	Incerteza	média (%) =	0,9548				
D	esvio padrão d	la incerteza 🛛 =	0,0011				

APÊNDICE G – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – FRAÇÃO GROSSOS

MOD. REOL-OGICA ENSAIDS LOOP DE BOMBE AMENTO FATORES DE ATRITO VARAÇÃO % RAZÃ MODELO R ² V (m/a) ÅP (hPa) Ra _{BR} FLUXD finad (filage) mag/filage) 0.00502 0.00789 -28.28 0.78 Power Law 0.743 1.71 0.72 7.516.10 Turbulento 0.00602 0.00789 -28.28 0.78 2.35 1.22 10.86 6.68.78 0.006014 0.006695 -20.34 0.83 2.35 1.32 10.911.51 0.00640 0.006957 -20.89 0.78 2.35 1.37 1.991.10 0.004532 0.00557 -20.89 0.79 MOD REOL-OGICA ENADS LOOP DE BOMEEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (flags) 0.005695 -21.31 0.82 MODELAGEM ENADS LOOP DE BOMEEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (flags) 0.005695 -21.61 1.72 MODELAGEM ENADAS LOOP DE BOMEEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (flags) <th>KESOMIC</th> <th>DA MODE</th> <th>LAGEM RE</th> <th>EOLOGICA</th> <th>(FRAÇÃO C</th> <th>GROSSOS -</th> <th>30% SÓLIDOS)</th> <th></th> <th>ENTAL E MODEL</th> <th>1420)</th>	KESOMIC	DA MODE	LAGEM RE	EOLOGICA	(FRAÇÃO C	GROSSOS -	30% SÓLIDOS)		ENTAL E MODEL	1420)	
MODELO RECLÓGICO RES RECLÓGICO RES RECLÓGICO RECLÓGICO RECLÓGICO RECLÓGICO RECLÓGI	MOD. REOL	ÓGICA	ENSAIC	DS LOOP D	DE BOMBEA	MENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO	
Power Law 1.00 0.29 3.986.65 0.007099 -28.28 0.73 Power Law 1.71 0.73 5.75 0.50 0.00744 -27.09 0.73 Power Law 0.744 1.77 0.77 7.518,10 1.0000540 0.000571 0.00567 0.00744 -27.03 0.82 2.33 1.37 1.991,19 0.005640 0.000572 0.20.00 0.83 0.00567 0.00749 -28.28 0.07 2.33 1.37 1.991,19 0.000540 0.000572 0.20.00 0.83 2.33 1.37 1.1991,19 0.000542 0.000547 -28.28 0.78 0.000 RADUC/GICA ENSAUCS LOCP DE BOME-AMENTO FATORES DE ATRITO (EXPERIMENTAL E MODE-AMENTO FATORES DE ATRITO (EXPERIMENTAL E MO	MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{f mod})/f _{exp})*100	fexp/fmod	
Power Law N.74 ST.75 O.85 At 48.81 0.005857 0.007444 27.09 0.774 1.71 0.75 ST.81 0.00597 21.83 0.02 2.35 1.27 0.091 853.01 0.00554 0.00557 2.02.0 0.03 2.35 1.27 1.091.51 0.00554 0.00559 2.01.1 0.02 2.35 1.37 1.991.10 0.004372 0.00559 2.03.0 0.03 2.35 1.37 1.991.10 0.004372 0.00559 2.03.0 0.03 MEDIA MEDIA MEDIA 0.00557 2.02.0 0.03 MEDIA MEDIA MEDIA 0.00557 0.00557 0.00557 MEDIA MEDIA EUDED EUDED MEDIA MEDIA MEDIA EUDED EUDED MEDIA <td co<="" td=""><td></td><td></td><td>1,00</td><td>0,29</td><td>3.966,65</td><td></td><td>0,006002</td><td>0,007699</td><td>-28,28</td><td>0,78</td></td>	<td></td> <td></td> <td>1,00</td> <td>0,29</td> <td>3.966,65</td> <td></td> <td>0,006002</td> <td>0,007699</td> <td>-28,28</td> <td>0,78</td>			1,00	0,29	3.966,65		0,006002	0,007699	-28,28	0,78
Power Law 1,31 0.47 5.472.52 0.0003395 0.0006977 -2.413 0.62 1,55 0.50 0.677.4 -2.13 0.62 0.003395 0.000577 -0.20 0.63 2,25 1.32 10.981.6 0.510 0.000567 -2.61 0.62 2,25 1.37 11.991.19 0.004589 0.000567 -2.63 0.62 2,253 1.37 11.991.19 0.004586 0.005677 -2.63.99 0.97 WEDIA VEDIA VEDIA VEDIA VEDIA RESUMD DA MODELAGEM ECLÓCICA E DETERMINAÇÃO DOS FATORES DE ATRITO VARIAÇÃO % RAZAC MOD.REOLÓGICA ENSAUS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZAC MODELOC R ² V (mis) AP (PPa) Raga FLUND fand (Mose23 0.000354 2.23 1.53 LOCACICA ENSAUS LOOP DE SOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZAC MODEL			1,10	0,35	4.443,81		0,005857	0,007444	-27,09	0,79	
Power Law 0.7443 1.55 0.83 0.687.45 0.003365 0.000574 0.000548 0.243 0.63 1.21 0.91 8.631.01 Tutulento 0.000557 -0.000548 -0.243 0.63 2.55 1.37 11991.19 0.000557 -0.000557 -2.68 0.79 2.55 1.37 11991.19 0.000557 -0.000557 -2.68 0.79 2.55 1.37 11991.19 0.000557 -0.000557 -2.68 0.79 MEDIA MEDIA			1,31	0,47	5.472,52		0,005610	0,006988	-24,56	0,80	
Power Law 0.7443 1.71 0.75 2.516.10 Turbulento 0.000271 0.000375 -0.203 0.63 2.35 1.32 109.11 1.05 9.653.81 0.000564 0.0008075 -2.03 0.03 2.55 1.33 119.19 0.004589 0.000807 -2.03.99 0.81 2.53 1.37 119.91.19 0.004589 0.000564 -0.005647 -26.89 0.79 MEDIA -23.99 0.81 -23.99 0.81 MEDIA FATORES DE ATRITO VARIAÇÃO % RAZÁC MODELOGIC R° V (m/s) AP (P2) Rea, FLUXD face mmod (m/s) Kapfma MODELOGIC R° V (m/s) AP (P2) Rea, FLUXD face mmod (m/s) Kapfma LOLGICO R° V (m/s) AP (P2) Rea, FLUXD face mmod (m/s) Ap (P1, P3) RazáC 1.25 <td< td=""><td></td><td></td><td>1,55</td><td>0,63</td><td>6.687,45</td><td></td><td>0,005395</td><td>0,006577</td><td>-21,93</td><td>0,82</td></td<>			1,55	0,63	6.687,45		0,005395	0,006577	-21,93	0,82	
Image: bit is and the second secon	Power Law	0,7443	1,71	0,75	7.518,10	Turbulento	0,005271	0,006348	-20,43	0,83	
1 1 1 0.6 9.653.8 0.00458 0.00458 0.005697 -2.14 0.82 2.53 1.37 11.991.19 0.00458 0.005597 -26.89 0.79 MEDIA			1.92	0.91	8.631.01		0.005054	0.006075	-20.20	0.83	
2.65 1.23 10 991.51 0.004687 0.005697 -24.73 0.60 MEDIA -23.99 0.81 -23.99 0.81 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO VARIAÇÃO % RAZÃC MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÓ MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FUNDO 6800 6800 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FUNDO 6800758 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FUNDO 6800758 0.000254 0.000254 0.000258 2.2.23 1.38 FUNDO 0.000254 0.000254 0.0002684 2.8.2.3 1.4 0.000254 0.000254 0.000254 0.000254 0.000254 0.0000254 <th colspan="2</td> <td></td> <td></td> <td>2.11</td> <td>1.05</td> <td>9.658.36</td> <td></td> <td>0.004839</td> <td>0.005895</td> <td>-21.81</td> <td>0.82</td>			2.11	1.05	9.658.36		0.004839	0.005895	-21.81	0.82	
2,53 1,37 11,991,19 0,004372 0,005547 -26,88 0,79 MEDIA -23,99 0,81 RESUMO DA MODELAGEM REOLÓGICA E DETERNINAÇÃO DOS FATORES DE ATRITO EATRITO VARIAÇÃO % RAZAC MODELO R ² V (m/a) ΔP (kPa) Re _M FLUXO Isxp fmod (m/gw/wa) ¹ 100 Kopf fmod MODELO R ² V (m/a) ΔP (kPa) Re _M FLUXO Isxp fmod (m/gw/wa) ¹ 100 Kopf fmod MODELO R ² V (m/a) ΔP (kPa) Re _M FLUXO Isxp fmod (m/gw/wa) ¹ 100 Kopf fmod MODELO R ² V (m/a) ΔP (kPa) Re _M FLUXO Isxp fmod (m/gw/wa) ¹ 100 Kopf fmod 1121 0.61 4.277.73 Turbulento 0.000263 0.000364 28.83 1.34 2.51 1.77 7.277.36 Turbulento 0.006123 0.004151 1.73 1.75			2.35	1.23	10.981.51		0.004568	0.005697	-24.73	0.80	
MEDIA -23,99 0,81 MEDIA -23,99 0,81 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 40% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO PATORES DE ATRITO VARIAÇÃO % RAZÁC MODELO R ² V (m/s) ΔP (Pa) Re _M FLUDO fitsp finod ((%mo) mod/%mo) fitsp finod (%mo) fitsp			2.53	1.37	11,991,19		0.004372	0.005547	-26.89	0.79	
MCDIA MCDIA MCDIA RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO EXACADOR MOD. REOLOGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARAÇÃO % MODELO R ² V (m/s) ΔP (kPa) Resk FLUDO fiszp find (fitorestand) MODELO R ² V (m/s) ΔP (kPa) Resk FLUDO fiszp find (fitorestand) fiszp find fitorestand)			_,	.,	MEDIA		-,	-,	-23.00	0.81	
RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 4% SÓLIDOS) MOD. REOLÓGICA EINSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO § RAZÃO (I fue- trophice) MOD. REOLÓGICA EINSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO § RAZÃO (I fue- trophice) Reprint MODELO R² V (mís) ΔP (IPa) Reprint FLUXO fatores De ATRITO VARIAÇÃO § RAZÃO MODELO R² V (mís) ΔP (IPa) Reprint FLUXO fatores De ATRITO VARIAÇÃO § RAZÃO 1155 LO 0.01 427,853 L O.0002654 0.007895 O.0005964 28,23 1,34 2,31 1,72 1,22,131 1,34 0.81 3,37,87 O.0005257 0.006491 10,73 1,35 Power Law A MODELAGEM REOLÓGICA EINSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO § RAZÃO MOD. REOLÓGICA EINSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO § RAZÃO MODELOGICA EINSAIO										-,	
MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO REOLÓGICO FATORES DE ATRITO V ARIAÇÃO % Fazác Razác MODELO REOLÓGICO R² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp find ((fexp- trans/fex)) fexp(fm) 112 0.61 4.279,53 0.008289 0.008364 26.23 1.36 1.31 0.81 5.377,45 0.008289 0.008364 28.83 1.41 1.88 1.17 7.773,36 Tubulento 0.007255 0.008632 22.83 1.41 2.50 1.88 13.791,87 0.008624 0.005144 22.34 1.29 2.50 1.88 13.791,87 0.006527 0.00414 22.34 1.29 2.71 2.04 1.512.26 0.00557 0.004610 12.31 1.14 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÁC MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÁC MODELOGICA ENSAIOS LOO	RESUMO	DA MODE	LAGEM RE	OLÓGICA	E DETERMI (FRAÇÃO C	NAÇÃO DO: BROSSOS -	S FATORES DE A 40% SÓLIDOS)	TRITO (EXPERIM	ENTAL E MODEL	ADO)	
MODELO RECLÓGICO RECLÓGICO R ² V (m/s) ΔP (kPa) ΔP (kPa) Result	MOD. REOL	ÓGICA	ENSAI	DS LOOP D	E BOMBEA	MENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO	
MODELO RECLÓCICO R ² V (m/s) ΔP (kPa) Resuft Resuft (kPa) FLUXO fexp fmod (kPa) (m/s) (kPa) fmod (kPa) (kPa) (kPa) fmod (kPa) (kPa) fmod (kPa) (kPa) fmod (kPa) (kPa) fmod (kPa) (kPa) <		1									
Power Law 1.00 0.49 3.627.99 0.000254 0.007286 21.25 1.27 Power Law 0.7768 1.65 1.05 6.871.65 1.06 6.871.65 0.00229 0.006864 28.83 1.41 1.91 1.38 9.316.30 0.007173 0.000526 28.20 1.39 2.11 1.56 10.77146 0.001733 0.000525 0.005668 27.85 1.39 2.13 1.72 112.291.18 0.006123 0.004915 19.73 1.25 2.50 1.88 15.791.67 0.005600 0.004915 19.73 1.25 2.71 2.04 15512.7 0.005600 0.004783 15.94 1.19 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MOD. REOLÓGICA L 1.63 0.74 0.007295 0.006822 1.93 1.91	MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp} . _{fmod})/f _{exp})*100	fexp/fmod	
Power Law 1,12 0,61 4.279,53 1,01 0,000829 0,006833 26,23 1,63 1,05 1,05 6,871,55 1,05 6,871,55 1,00 6,871,55 1,00 0,008942 0,008942 28,03 1,41 0,07788 1,18 1,17 7.727,36 1,18 1,071,46 0,007855 0,000584 25,35 1,39 2,11 1,56 10,771,46 0,007375 0,000785 0,000414 22,34 1,29 2,71 2,04 15,512,26 0,000622 0,004915 19,73 1,25 MEDIA V MEDIA V RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO VARIAÇÃO % RAZÂC MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÂC MODELO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{mod} /ma)/ma)/ma)/ma)/ma)/ma)/ma)/ma//ma//ma/			1,00	0,49	3.627,99		0,009254	0,007288	21,25	1,27	
Power Law 1.31 0.41 5.377.45 1.55 1.05 6.871.55 1.05 1.05 1.91 1.38 9.316.30 1.91 1.38 9.316.30 0.007855 0.006864 2.8.3 1.41 2.31 1.72 12.291.18 0.007855 0.006864 2.7.65 1.39 2.50 1.88 13.791.12 2.291.18 0.007855 0.006864 2.8.3 1.41 2.50 1.88 13.791.22 2.64 1.551.226 0.00415 19.73 1.25 0.005267 0.004610 12.31 1.14 1.14 1.14 0.00627 0.00415 19.73 1.25 MEDIA KEUMO DA MODELAGEM REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO & RAZÃO MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO & RAZÃO 1.60 0.674.47 1.90 1.61 6.83 1.07 1.61 0.44 3.011.03 0.44 3.011.03 0.00741 0.006822			1,12	0,61	4.279,53		0,009289	0,006853	26,23	1,36	
Power Law 1,55 1,05 6,871.57 Turbulento 0,008263 0.008263 0.008364 28.20 1,39 1,91 1,38 0,316.30 0,007173 0,006354 22.35 1,34 2,11 1,56 10.771,46 0,007173 0,006354 42.35 1,34 2,11 1,56 10.771,46 0,001713 0,006354 42.33 1,32 2,50 1,88 13.791,87 0,00123 0,004763 15.94 1,19 0,005257 0,004610 12.31 1,14 1,92 3,32 1,32 RESUMO DA MODELAGEM REOLÓGICA <e -="" 50%="" determinação="" grossos="" sólidos<="" td=""> V V 0,006624 0,004763 15.94 1,19 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBE-MENTO FATORES DE ATRITO VARIAÇÃO % RAZÁC MODELO R² V (m/s) ΔP (kPa) Re_{see} FLUXO fexp fmod ((fwo- fmod/fwe)/10) fexp/fmod fmod/fwe)/100 fexp/fmod fmod/fwe] 1,22 0,007295</e>			1,31	0,81	5.377,45		0,008942	0,006364	28,83	1,41	
Power Law 0,7788 1.68 1,17 7.727,36 Turbulento 0,007855 0.006868 27,85 1,39 2,31 1,72 12,291,1 1,56 0,07173 0,005344 22,34 1,29 2,50 1,88 13,791,67 0,006569 0,004763 15,94 1,19 2,50 1,88 15,512,26 0,005690 0,004763 15,94 1,19 0,005690 0,004610 12,31 1,14 2,397 1,32 MEDIA MODELOCICA ENSAIDS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELOGIO R ² V (m/s) AP (kPa) Re _{MR} FLUXO fexp fmod ((fexp- mos/Hegp)*100 expr/mc MODELOGIO R ² V (m/s) AP (kPa) Re _{MR} FLUXO fexp fmod ((fexp- mos/Hegp)*100 expr/mc 1,15 0,54 3,574,97 0,007295 0,006502 10,9650 10,90 1,12 1,18 0,76 <td< td=""><td></td><td></td><td>1,55</td><td>1,05</td><td>6.871,55</td><td></td><td>0,008253</td><td>0,005926</td><td>28,20</td><td>1,39</td></td<>			1,55	1,05	6.871,55		0,008253	0,005926	28,20	1,39	
Power Law 0,7/68 1.91 1.38 9.316.30 107Ubilition 0,007173 0.008354 22.35 1.34 2.11 1.56 10.771.46 0.006123 0,0006124 0.0005144 22.34 1.29 2.50 1.88 13.791.87 0.00524 0,0006123 0,0004915 19.73 1.25 2.71 2.04 15.512.26 0.005257 0.004610 12.31 1.14 MEDIA RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO VARIAÇÃO % RAZÃO MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO R² V (m/s) ΔP (kPa) Re _{Ma} FLUXO fexp fmod ((f _{usp} - fmod)/fmg/)/mg/ fmod 1.12 1.15 0.54 3.574.97 0.007245 0.0005601 10.90 1.12 1.38 0.76 4.749.20 0.006820 0.006522 2.37 1.31 2.00 1.42 8.465.8 0.00	Damas I and	0.7700	1,68	1,17	7.727,36	Turkedente	0,007855	0,005668	27,85	1,39	
2.11 1,56 10.771.42 0.00624 0.00624 0.006144 22.34 1.29 2.31 1.72 12.291.18 0.006123 0.004915 19.73 1.25 2.71 2.04 15.512.26 0.005287 0.004915 19.73 1.25 MEDIA MEDIA 23.97 1.32 MEDIA 23.97 1.32 MEDIA MEDIA 23.97 1.32 MEDIA MEDIA 23.97 1.32 MEDIA MEDIA 7.6 2.30 1.32 MEDIA FLUXO FLUXO FLUXO MEDIA 1.6 0.007245 0.006500 1.06 0.007245 0.006501 1.22 MEDIA 1.13 1.33 0.007245 0.006501 1.23	Power Law	0,7768	1,91	1,38	9.316,30	Turbulento	0,007173	0,005354	25,35	1,34	
2.31 1.72 1.2291,18 0.006123 0.004915 19,73 1.25 2.60 1.88 13.791,87 0.005590 0.004783 15,94 1,19 2.71 2.04 15.512,26 0.005597 0.004915 19,73 1,25 MEDIA 0.005297 0.004915 19,73 1,25 MEDIA 0.005297 0.004915 19,73 1,32 MEDIA 0.005297 0.004915 19,73 1,32 MEDIA 0.005297 0.004915 19,73 1,32 MEDIA MEDIA CENCEDE ATRITO Variação % RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO Variação % RAZÃO MOD.REOLÓGICO R ² V (m/s) ΔP (kPa) Reyr FLUXO fexp fmod ((fexp- rmod/fexp)*100 fexp/fmc QUOGICO R ² V (m/s) ΔP (kPa) Reyr FLUXO fexp fmod (0.005232 1,31 1,02			2,11	1,56	10.771,46		0,006624	0,005144	22,34	1,29	
2,50 1,88 13,791,87 0.005690 0.004783 15,94 1,19 2,71 2,04 15.512,26 0.005257 0.004610 12.31 1,14 MEDIA 23,97 1,32 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (RRQÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO (free,p. traed/fag)*100 fexp fmod ((feg,p. traed/fag)*100 fexp/fmc MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((feg,p. traed/fag)*100 fexp/fmc 1,15 0,54 3.574,97 0.007411 0.006832 6.83 1.07 1,15 0,54 3.574,97 0.007391 0.006522 2.3.70 1.31 1,82 1,23 7.389,97 Turbulento 0.006359 0.004514 24.3 1.32 2,20 1,62 9.82,072 0.005359 0.004393 22.35 1.25 <td colspa<="" td=""><td></td><td></td><td>2,31</td><td>1,72</td><td>12.291,18</td><td></td><td>0,006123</td><td>0,004915</td><td>19,73</td><td>1,25</td></td>	<td></td> <td></td> <td>2,31</td> <td>1,72</td> <td>12.291,18</td> <td></td> <td>0,006123</td> <td>0,004915</td> <td>19,73</td> <td>1,25</td>			2,31	1,72	12.291,18		0,006123	0,004915	19,73	1,25
2,71 2,04 15.512.28 0.005257 0.004610 12.31 1.14 MEDIA 23.97 1.32 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 50% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((fexp- rmod/fexp)/100 fexp/fmo fexp/fmo 1.03 0.44 3.011.03 0.007241 0.006932 6.83 1.07 1.15 0.54 3.579.92 0.006520 0.006503 17.89 1.22 1.80 0.99 5.979.92 1.00 0.006520 0.006503 1.78.9 1.23 2.00 1.42 9.80.72 0.005687 0.004514 23.84 1.31 2.20 1.62 9.820.72 0.005687 0.004514 23.84 1.31 2.20 1.62 9.820.72 0.005687 0.004314 1.98.7			2,50	1,88	13.791,87		0,005690	0,004783	15,94	1,19	
NEDIA 0.00000 21,01 1,12 MEDIA 23,97 1,32 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO VARIAÇÃO % RAZÃO MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO R ² V (m/s) ΔP (kPa) Re _{Mar} FLUXO fexp fmod ((f _{sp} - rmod/f _{sp})*100 fexp/fmod 1,03 0,44 3.011,03 0,00741 0,006832 6,83 1,07 1,15 0,54 3.574,97 Turbulento 0,007091 0,006822 0,33 1,22 Power Law 0,4316 1,82 1,23 7.308,97 Turbulento 0,006822 0,005252 23,70 1,31 2.00 1,42 8.465.68 0,005687 0,004391 23,84 1,31 2.02 1,62 9.820.72 0,005891 0,005827 1,27 1,31 2.62 2,01 12.892,79 0,005587 0,004393 22,35 1,29 <td></td> <td></td> <td>2 71</td> <td>2 04</td> <td>15 512 26</td> <td></td> <td>0.005257</td> <td>0.004610</td> <td>12.31</td> <td>1 14</td>			2 71	2 04	15 512 26		0.005257	0.004610	12.31	1 14	
NIEDIA 23,97 1,32 NIEDIA 23,97 1,32 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 50% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % (fexp: fmod) RaZÃO (fexp: fmod) <			2,11	2,04	10.012,20		0,000201	0,004010	12,01	1, 14	
RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 50% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{nop})- fmod/6,83 1,07 1,15 0,54 3,574,97 0,007441 0,006522 23,70 1,31 1,82 1,23 7,308,97 Turbulento 0,006520 0,00522 23,70 1,31 2,00 1,42 8.465,68 0.006599 0,00441 24,30 1,32 2,00 1,42 8.465,68 0.005597 0,004361 23,72 1,31 2,00 1,42 8.465,68 0.005597 0,00441 24,30 1,32 2,00 1,42 8.465,68 0.0056597 0,004314 24,30 1,32 2,62 2,01 12.892,79 0,005587 0,004561 23,72 1,31 0,005627 0,004314 24,30									22.07	1 22	
MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f scp. fmod)/fexp)*100 fexp/fmod fexp/fmod Power Law 0,4316 1,03 0.44 3.011,03 0.007441 0,006932 6,83 1.07 1,15 0,54 3.574,97 0,007295 0,006502 10.90 1,12 1,60 0.99 5.979.92 0,007295 0,005622 23,70 1,31 2,00 1,42 8.456,68 0,006559 0,004814 24,30 1,32 2,00 1,62 9.820,72 0,005587 0,004339 22,35 1,29 2,62 2,01 12.892,79 0,005239 0,004339 22,35 1,29 0,005239 0,004339 22,35 1,29 1,25 1,25 19,27 1,24 MODELO RESUMO DA MODELAGEM REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO </th <th>RESUMO</th> <th>DA MODE</th> <th>LAGEM RE</th> <th>OLÓGICA</th> <th>MEDIA E DETERMI (FRAÇÃO C</th> <th>NAÇÃO DOS BROSSOS -</th> <th>S FATORES DE A 50% SÓLIDOS)</th> <th>TRITO (EXPERIM</th> <th>23,97 ENTAL E MODEL</th> <th>1,32 -ADO)</th>	RESUMO	DA MODE	LAGEM RE	OLÓGICA	MEDIA E DETERMI (FRAÇÃO C	NAÇÃO DOS BROSSOS -	S FATORES DE A 50% SÓLIDOS)	TRITO (EXPERIM	23,97 ENTAL E MODEL	1,32 -ADO)	
Power Law 1,03 0,44 3.011,03 0,007441 0,006932 6,83 1,07 1,15 0,54 3.574,97 0,007295 0,006500 10,90 1,12 1,38 0,76 4.749,20 0,007295 0,006502 10,90 1,12 1,82 1,23 7.308,97 Turbulento 0,006620 0,005522 23,70 1,31 2,00 1,42 8.465,68 0,006620 0,004814 24,30 1,32 2,20 1,62 9.820,72 0,006587 0,004339 22,35 1,29 0,00587 0,004339 22,35 1,29 0,005239 0,004188 19,87 1,25 MEDIA 19,27 1,24 MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) ((FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO R² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod <t< td=""><td>RESUMO MOD. REOL</td><td>ÓGICA</td><td>ELAGEM RE</td><td>EOLÓGICA DS LOOP E</td><td>MEDIA E DETERMI (FRAÇÃO C DE BOMBEA</td><td>NAÇÃO DO: BROSSOS -</td><td>S FATORES DE A 50% SÓLIDOS) FATORES</td><td>TRITO (EXPERIM DE ATRITO</td><td>23,97 ENTAL E MODEL VARIAÇÃO %</td><td>1,32 -ADO) RAZÃO</td></t<>	RESUMO MOD. REOL	ÓGICA	ELAGEM RE	E OLÓGICA DS LOOP E	MEDIA E DETERMI (FRAÇÃO C DE BOMBEA	NAÇÃO DO: BROSSOS -	S FATORES DE A 50% SÓLIDOS) FATORES	TRITO (EXPERIM DE ATRITO	23,97 ENTAL E MODEL VARIAÇÃO %	1,32 - ADO) RAZÃO	
Power Law 0,4316 1,65 3,574,97 0,007295 0,006502 1,03 1,03 Power Law 0,4316 1,62 9,5979,92 1,62 9,607 0,007295 0,006500 10,90 1,22 2,00 1,42 8,465,68 0,007295 0,006502 0,00501 2,384 1,31 2,00 1,42 8,465,68 0,005587 0,004814 24,30 1,32 2,20 1,62 9,820,72 0,006529 0,004319 23,32 1,31 0,005587 0,004339 22,35 1,29 0,005587 0,004339 22,35 1,29 2,62 2,01 12,892,79 0,005587 0,004339 22,35 1,29 0,005616 A MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) 19,27 1,24 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) ((f _{6xp} , f _{mod})/f _{6xp})/f ₁₀₀ fexp/fmc RESUNO DA NOBELAGEM REOLÓGICA E DETERMINAÇÃO DOS (0,003754 <t< td=""><td>RESUMO MOD. REOL MODELO REOLÓGICO</td><td>ÓGICA</td><td>ELAGEM RE ENSAIC V (m/s)</td><td>OLÓGICA DS LOOP Γ ΔΡ (kPa)</td><td>MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re_{MR}</td><td>NAÇÃO DOS BROSSOS - MENTO FLUXO</td><td>S FATORES DE A 50% SÓLIDOS) FATORES fexp</td><td>TRITO (EXPERIM DE ATRITO fmod</td><td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp}.</td><td>1,32 ADO) RAZÃO fexp/fmod</td></t<>	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ELAGEM RE ENSAIC V (m/s)	OLÓGICA DS LOOP Γ ΔΡ (kPa)	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR}	NAÇÃO DOS BROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp	TRITO (EXPERIM DE ATRITO fmod	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} .	1,32 ADO) RAZÃO fexp/fmod	
Power Law 1,13 0,04 0,076 1,749,20 0,007091 0,005823 17,89 1,22 1,60 0,99 5.979,92 1,60 0,099 5.979,92 0,006822 0,005252 23,70 1,31 2,00 1,42 8.465,68 0,006539 0,004814 24,30 1,32 2,20 1,62 9.820,72 0,005828 0,005839 0,004814 24,30 1,32 2,41 1,81 11.319,40 0,005587 0,004399 22,35 1,29 2,62 2,01 1.892,79 0,005239 0,004198 19,87 1,25 MEDIA MEDIA 19,27 1,24 MEDIA MEDIA 19,27 1,24 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MODELO R ² V (m/s) ΔP (kPa) R _{MR} FLUXO fexp fmod ((fsp- fmod)/fexp)^1100 fexp/fmod	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ENSAIC V (m/s)	OLÓGICA DS LOOP E ΔP (kPa)	MEDIA E DETERMI (FRAÇÃO C DE BOMBEA Re _{MR}	NAÇÃO DOS BROSSOS - AMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp	TRITO (EXPERIM DE ATRITO fmod	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} fmod)f _{exp})*100 6.83	1,32 ADO) RAZÃO fexp/fmod	
Power Law 0,4316 1,30 0,0,99 5.979,92 0,00682 0,00582 17,69 1,22 2,00 1,42 8.465,68 0,00682 0,00582 2,002 1,31 2,00 1,42 8.465,68 0,006359 0,004814 24,30 1,32 2,01 1,82 9.820,72 0,005880 0,004561 23,72 1,31 2,41 1,81 11.319,40 0,005587 0,004339 22,35 1,29 2,62 2,01 12.892,79 0,005239 0,004198 19,87 1,25 MEDIA MEDIA Trice interval MEDIA RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MODELO R MODELO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{srp.} troc)/f _{resp})*100 fexp/fmc MODELO R ² 0,68 544,62 0,0011072 0,029378 <td< td=""><td>RESUMO MOD. REOL MODELO REOLÓGICO</td><td>ÓGICA</td><td>ENSAIC V (m/s)</td><td>OLÓGICA DS LOOP E ΔP (kPa) 0,44</td><td>MEDIA E DETERMII (FRAÇÃO (DE BOMBEA Re_{MR} 3.011,03 2.574.07</td><td>NAÇÃO DOS BROSSOS - IMENTO FLUXO</td><td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441</td><td>TRITO (EXPERIM DE ATRITO fmod 0,006932</td><td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp.} f_{mod})/f_{exp})*100 6,83 10.00</td><td>1,32 ADO) RAZÃO fexp/fmod 1,07</td></td<>	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ENSAIC V (m/s)	OLÓGICA DS LOOP E ΔP (kPa) 0,44	MEDIA E DETERMII (FRAÇÃO (DE BOMBEA Re _{MR} 3.011,03 2.574.07	NAÇÃO DOS BROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441	TRITO (EXPERIM DE ATRITO fmod 0,006932	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} f _{mod})/f _{exp})*100 6,83 10.00	1,32 ADO) RAZÃO fexp/fmod 1,07	
Power Law 0,4316 1,00 0,99 5.978,92 Turbulento 0,000682 0,00052 23,70 1,31 90wer Law 1,82 1,23 7.308,97 Turbulento 0,006620 0,0005041 23,84 1,31 2,00 1,42 8.465,68 0,006359 0,004814 24,30 1,32 2,20 1,62 9.820,72 0,005587 0,004339 22,35 1,29 2,62 2,01 12.892,79 0,00529 0,004198 19,87 1,25 MEDIA MEDIA 19,27 1,24 MEDIA FUXO DA MODELAGEM RECLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃC MODELO R² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod (((fexp-trood)/fexp)*100) fexp/fmcfmod 1,03,91 0,43 0,38 0,009305 0,025619 -175,32 0,38 0,38 </td <td>RESUMO MOD. REOL MODELO REOLÓGICO</td> <td>ÓGICA</td> <td>ENSAIC V (m/s) 1,03 1,15</td> <td>EOLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,54</td> <td>MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re_{MR} 3.011,03 3.574,97 4.749,20</td> <td>NAÇÃO DOS BROSSOS - IMENTO FLUXO</td> <td>5 FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007201</td> <td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500</td> <td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp}- fmod)/f_{exp})*100 6,83 10,90 47.90</td> <td>1,32 ADO) RAZÃO fexp/fmod 1,07 1,12</td>	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ENSAIC V (m/s) 1,03 1,15	EOLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,54	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20	NAÇÃO DOS BROSSOS - IMENTO FLUXO	5 FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007201	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} - fmod)/f _{exp})*100 6,83 10,90 47.90	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12	
Power Law 0,4310 1,62 1,63 7.306,97 Turbulento 0,0002/0 0,00041 23,84 1,31 2,00 1,42 8.465,68 0,006359 0,000414 24,30 1,32 2,20 1,62 9.820,72 0,005890 0,004814 24,30 1,32 2,41 1,81 11.319,40 0,005897 0,004339 22,35 1,29 2,62 2,01 12.892,79 0,005587 0,004198 19,87 1,25 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) Postor 19,27 1,24 MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) fexp fmod ((fexp- trod)fexp)*100 fexp/fmc MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((fexp- trod)fexp)*100 fexp/fmc 1,09 0,68 624,53 0,009305 0,025819 -175,32 0,38 1,09	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ENSAIC V (m/s) 1,03 1,15 1,38	EOLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,54	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.970.92	NAÇÃO DOS BROSSOS - IMENTO FLUXO	50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,007892	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp-} fmcd)/f _{exp})*100 6,83 10,90 17,89 23,20	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22	
Amplify 2,00 1,42 0.405,00 0.005393 0.004014 24,30 1,32 2,241 1,81 1,1319,40 0,005880 0,004561 23,72 1,31 2,62 2,01 12.892,79 0,00587 0,00439 22,35 1,29 2,62 2,01 12.892,79 0,005587 0,00439 19,87 1,25 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA MEDIA 19,27 1,24 MEDIA ENCIÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((fexp- fmod)/fexg)/1600 fexp/fmod 1,51 1,23 <	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA	ENSAIC V (m/s) 1,03 1,15 1,38 1,60	EOLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99	MEDIA E DETERMII (FRAÇÃO (E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.299,92	NAÇÃO DOS BROSSOS - MENTO FLUXO	5 FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006822 0,006822	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005823 0,005524	23,97 ENTAL E MODEL VARIAÇÃO % (((f _{exp.} fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 22,94	1,32 ADO) RAZÃO fexp/fmoc 1,07 1,12 1,22 1,31 1,24	
Image: Power Law 2,20 1,02 5.020,72 0.005960 0,004961 23,72 1,31 2,41 1,81 11.319,40 0,005587 0,004339 22,35 1,29 2,62 2,01 12.892,79 0,005239 0,004339 22,35 1,29 MEDIA MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA MEDIA 19,27 1,24 MEDIA MEDIA 19,27 1,24 MEDIA MEDIA MEDIA MEDIA MEDIA 1,22 0,26 0,005687 0,004198 1,23 MOD. REOLÓGICA ENSAIDS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % R4ZÃC MODELO R ² 0,011072 </td <td>RESUMO MOD. REOL MODELO REOLÓGICO</td> <td>ÓGICA R² 0,4316</td> <td>ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82</td> <td>COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23</td> <td>MEDIA E DETERMII (FRAÇÃO C BE BOMBEA BOMBEA 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 9.465,67</td> <td>NAÇÃO DO: SROSSOS - IMENTO FLUXO Turbulento</td> <td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,006620</td> <td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005252 0,005041</td> <td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp.})*100 6,83 10,90 17,89 23,70 23,84 24,22</td> <td>1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,31</td>	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23	MEDIA E DETERMII (FRAÇÃO C BE BOMBEA BOMBEA 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 9.465,67	NAÇÃO DO: SROSSOS - IMENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,006620	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005252 0,005041	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.})*100 6,83 10,90 17,89 23,70 23,84 24,22	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,31	
2.41 1.01 11.319,40 0.005387 0.004339 22,35 1,29 2,62 2,01 12.892,79 0.005239 0.004198 19,87 1,25 MEDIA MEDIA MEDIA MEDIA RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod (([f _{ssp} - fmod)/f _{ssp})*100 fexp/fmc 1,00 0,68 544,62 0.011072 0.029378 -165,34 0.38 1,51 1,23 1.048,18 animar 0.009119 0.021420 -133,91 0,43 1,51 1,67 1.472,21 0.008754 0.015265 -74,38 0.57 0,6449 1,67 1.472,21 0.008754 0.015265 -74,38 0.57 2,51	RESUMO MOD. REOL MODELO REOLÓGICO Power Law	ÓGICA R ² 0,4316	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 4,62	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.890,70	NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,006359 0,006529	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005823 0,005825 0,005041 0,004814 0,004814	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 29,72	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,31 1,32 1 21	
NEDIA 0.005239 0.004198 19,87 1,25 MEDIA MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA 19,27 1,24 MEDIA MEDIA RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod (((fexp- fmod))fexp)*100 fexp/fmod 1,00 0,68 544,62 0.011072 0,029378 -165,34 0,38 1,09 0,68 624,53 0.009119 0,021420 -134,91 0,43 1,51 1,23 1.048,18 Laminar 0.008754 0,015265 -74,38 0,57 1,51 1,67 1,472,21 0.007762 0,010868 -40,01 0,71 <td>RESUMO MOD. REOL MODELO REOLÓGICO Power Law</td> <td>0,4316</td> <td>ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,24</td> <td>COLÓGICA DS LOOP D ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62</td> <td>MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re_{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11,310,40</td> <td>NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento</td> <td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006359 0,005880 0,005880</td> <td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005041 0,004814 0,004814 0,004820</td> <td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp}, fmod)/f_{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,55</td> <td>1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,32</td>	RESUMO MOD. REOL MODELO REOLÓGICO Power Law	0,4316	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,24	COLÓGICA DS LOOP D ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11,310,40	NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006359 0,005880 0,005880	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005041 0,004814 0,004814 0,004820	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,55	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,32	
MEDIA 19,27 1,24 MEDIA 19,27 1,24 RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{exp} - fmod) ⁴ (kgr) ¹ 00) fexp/fmod 1,09 0,68 624,53 0,009305 0,025619 -175,32 0,38 1,122 0,83 746,95 0,009305 0,025619 -175,32 0,36 1,121 1,048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,87 1,67 1,472,21 0,008754 0,015265 -74,38 0,57 1,87 1,67 1,472,21 0,008754 0,010868 -40,01 0,71 2,33 2,06 2,089,91 0,006176 0,007663 -24,07 0,81 2,51 2,21 2,349,93 <t< td=""><td>RESUMO MOD. REOL MODELO REOLÓGICO Power Law</td><td>ÓGICA R² 0,4316</td><td>ELAGEM RE ENSAK V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,20 2,21</td><td>COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,54 0,59 1,23 1,42 1,62 1,81 2,24</td><td>MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re_{MR} 3.011.03 3.574.97 4.749.20 5.979.92 7.308.97 8.465.68 9.820,72 11.319.40 4.290.072</td><td>NAÇÃO DOS SROSSOS - IMENTO FLUXO Turbulento</td><td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,00559 0,005880 0,00587 0,00587</td><td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005252 0,005252 0,005041 0,004314 0,004361 0,004361</td><td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp-} fmod)f_{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 40 0.7</td><td>1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,32 1,31 1,22 1,31</td></t<>	RESUMO MOD. REOL MODELO REOLÓGICO Power Law	ÓGICA R ² 0,4316	ELAGEM RE ENSAK V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,20 2,21	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,54 0,59 1,23 1,42 1,62 1,81 2,24	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011.03 3.574.97 4.749.20 5.979.92 7.308.97 8.465.68 9.820,72 11.319.40 4.290.072	NAÇÃO DOS SROSSOS - IMENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,00559 0,005880 0,00587 0,00587	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005252 0,005252 0,005041 0,004314 0,004361 0,004361	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp-} fmod)f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 40 0.7	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,32 1,31 1,22 1,31	
RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO GROSSOS - 60% SÓLIDOS) MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((fmop. fmod)/fmog)/fmog) fexp/fmod MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((fmop. fmod)/fmog)/fmog) fexp/fmod 1,00 0,68 544,62 0,011072 0,029378 -165,34 0,38 1,02 0,683 746,95 0,009305 0,025619 -175,32 0,36 1,51 1,23 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,614 1,67 1,472,21 0.008764 0,015265 -74,38 0,57 1,817 1,67 1,472,21 0,008764 0,015265 -74,38 0,57 2,33 2,066 2.087,91 0,008764 0,012528 -48,01 <td>RESUMO MOD. REOL MODELO REOLÓGICO</td> <td>ÓGICA R² 0,4316</td> <td>ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62</td> <td>COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01</td> <td>MEDIA E DETERMII (FRAÇÃO C E BOMBEA Re_{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,72</td> <td>NAÇÃO DOS ROSSOS - IMENTO FLUXO Turbulento</td> <td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006820 0,006620 0,006587 0,005587 0,005239</td> <td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005041 0,004814 0,004561 0,004339 0,004198</td> <td>23,97 ENTAL E MODEL VARIAÇÃO % (((f_{exp-} (mod) f_{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 (0,67</td> <td>1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,21 1,31 1,32 1,31 1,29 1,25</td>	RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01	MEDIA E DETERMII (FRAÇÃO C E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,72	NAÇÃO DOS ROSSOS - IMENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006820 0,006620 0,006587 0,005587 0,005239	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005041 0,004814 0,004561 0,004339 0,004198	23,97 ENTAL E MODEL VARIAÇÃO % (((f _{exp-} (mod) f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 (0,67	1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,21 1,31 1,32 1,31 1,29 1,25	
MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{exp} - fmod)/f _{exp})*100 fexp/fmod 1.00 0.68 544,62 0.011072 0.029378 -1165,34 0.38 1.09 0.68 624,53 0.009305 0.025619 -175,32 0.36 1.51 1.23 1.048,18 1.67 1.472,21 0.009119 0.021420 -134,91 0.43 1.67 1.677 1.472,21 0.008754 0.0115265 -74,38 0.57 2.33 2.06 2.087,91 0.008764 0.012528 -48,01 0.68 2.51 2.21 2.349,93 0.006176 0.00763 -24,07 0.81 2.51 2.75 2.305 2.716,83 Turbulento 0.005702 0,007351 -28,90 0.78	RESUMO MOD. REOL MODELO REOLÓGICO Power Law	ÓGICA R ² 0,4316	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62	COLÓGICA DS LOOP D 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 11.319,40 12.892,79 MEDIA	NAÇÃO DOS BROSSOS - MENTO FLUXO Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006587 0,005587 0,005239	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005823 0,005825 0,005041 0,004814 0,004814 0,004339 0,004198	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , f _{mod})/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,31 1,32 1,31 1,29 1,25 1,24	
MODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod ((f _{srp.})r _{mod})/f _{exp})*100 fexp/fmod NODELO REOLÓGICO R ² V (m/s) ΔP (kPa) Re _{MR} FLUXO fexp fmod (((f _{srp.})r _{mod})/f _{exp})*100 fexp/fmod NODELO REOLÓGICO 0,068 544,62 0,011072 0,029378 -165,34 0,38 1,09 0,68 624,53 0,009305 0,025619 -175,32 0,36 1,22 0,83 746,95 0,009305 0,0021420 -134,91 0,43 1,51 1,23 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,71 1,52 1.277,19 1.78,53 0,00762 0,010868 -40,01 0,71 2,11 1,91 1.783,53 0,006974 0,008754 0,008684 -28,27 0,78 2,51 2,21 2.349,93 Turbulento 0,005702 0,00763 -24,07 0,81 2,75	RESUMO MOD. REOL MODELO REOLÓGICO Power Law	ÓGICA R ² 0,4316	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE	COLÓGICA DS LOOP Γ ΔP (kPa) 0,44 0,54 0,54 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA	MEDIA E DETERMII (FRAÇÃO C ØE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C	NAÇÃO DOS ROSSOS - IMENTO FLUXO Turbulento	5 FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006620 0,006359 0,005587 0,005587 0,005239 S FATORES DE A 60% SÓLIDOS)	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,00500 0,005252 0,005041 0,004814 0,004561 0,004339 0,004198	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} . rmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO)	
Power Law 1,00 0,68 544,62 0,011072 0,029378 -165,34 0,38 1,09 0,68 624,53 0,009305 0,025619 -175,32 0,36 1,22 0,83 746,95 0,009119 0,021420 -134,91 0,43 1,51 1,23 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,71 1,52 1.277,19	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL	ÓGICA R ² 0,4316 DA MODE	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE ENSAIC	COLÓGICA DS LOOP E 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA	MEDIA E DETERMII (FRAÇÃO C E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C E BETERMII CIRAÇÃO C	NAÇÃO DO: BROSSOS - IMENTO FLUXO Turbulento NAÇÃO DO: BROSSOS - IMENTO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006359 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 S FATORES DE A 60% SÓLIDOS)	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,005500 0,005823 0,005252 0,005041 0,004561 0,004339 0,004198 TRITO (EXPERIM DE ATRITO	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp})100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO %	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,32 1,25 1,24 ADO) RAZÃO	
Power Law 1,09 0,68 624,53 0,009305 0,025619 -175,32 0,36 1,22 0,83 746,95 0,009119 0,021420 -134,91 0,43 1,51 1,23 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,71 1,52 1.277,19 Laminar 0,008764 0,015265 -48,01 0,68 1,87 1,67 1.472,21 0,00762 0,010868 -40,01 0,71 2,11 1,191 1.785,53 0,006176 0,007623 -28,27 0,78 2,33 2,06 2.087,91 0.006176 0,007633 -24,07 0,81 2,51 2,21 2.349,93 Turbulento 0,005702 0,007511 -28,90 0,78 2,75 2,305 2.716,83 Turbulento 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ENSAIC V (m/s)	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa)	MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Rê _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA	NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento NAÇÃO DOS ROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007295 0,007295 0,007295 0,007295 0,007295 0,006882 0,006882 0,0065887 0,005587 0,0056	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,005252 0,005252 0,005252 0,005541 0,004561 0,004561 0,004561 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} fmod)/f _{exp})*100	1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,31 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZĂO fexp/fmod	
Power Law 1.22 0.83 746,95 Laminar 0.009119 0.021420 -13.91 0.43 1,51 1,23 1.048,18 Laminar 0.009119 0.021420 -134,91 0.43 1,51 1,23 1.048,18 Laminar 0.008754 0.015265 -74,38 0.57 1,71 1,52 1.277,19 0.008764 0.012528 48.01 0.68 1,87 1,67 1.472,21 0.00762 0.010868 -40.01 0.71 2,31 2,06 2.087,91 0.006176 0.007663 -24.07 0.81 2,51 2,21 2.349,93 Turbulento 0.005702 0.007351 -28,90 0.78 2,75 2,305 2.716,83 Turbulento 0.006995 -40.97 0.71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ²	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,41 2,62 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,44 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa) 0,68	MEDIA E DETERMIN (FRAÇÃO C DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 544,62	NAÇÃO DO: ROSSOS - MENTO FLUXO Turbulento NAÇÃO DO: SROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006587 0,00570000000000000000000000000000	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,005823 0,005252 0,005041 0,004314 0,004314 0,004339 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod 0,029378	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,70 23,84 24,30 23,77 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 165,34	1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZĂO fexp/fmod 6,38	
Power Law 0,6449 1.52 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,51 1,52 1.048,18 Laminar 0,008754 0,015265 -74,38 0,57 1,71 1,52 1.277,19 0,008764 0,015268 -48,01 0,68 1,87 1,67 1.472,21 0,007762 0,010868 -40,01 0,71 2,11 1,91 1.783,53 0,006994 0,008764 0,007663 -24,07 0,81 2,33 2,06 2.087,91 0,005702 0,007351 -28,90 0,78 2,51 2,21 2.349,93 Turbulento 0,005702 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MOD. REOL	ÓGICA 0,4316 ÓGICA A MODE ÓGICA R ²	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00 1,09	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa) 0,68 0,68	MEDIA E DETERMII (FRAÇÃO C ØE BOMBEA 3.011,03 3.574,97 4.749,20 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C ØE BOMBEA	NAÇÃO DOS BROSSOS - IMENTO FLUXO Turbulento NAÇÃO DOS BROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006359 0,005587 0,005587 0,005239 S FATORES DE A 60% SÓLIDOS) FATORES fexp 0,011072 0,009305	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005252 0,005252 0,005252 0,005252 0,00541 0,004344 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod 0,029378 0,025619	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 -165,34 -175,32	1,32 ADO) RAZÃO fexp/fmoc 1,07 1,12 1,21 1,31 1,31 1,31 1,32 1,25 1,24 ADO) RAZÃO fexp/fmoc 0,38 0,36	
Power Law 0.6449 1.71 1.52 1.277,19 0.008464 0.012528 48,01 0,681 1,71 1,52 1.472,21 0,008464 0,012528 48,01 0,61 1,87 1,67 1.472,21 0,008762 0,010868 40,01 0,71 2,11 1,91 1.783,53 0,006994 0,008763 -28,27 0,78 2,33 2,06 2.087,91 0,006176 0,007633 -24,07 0,81 2,51 2,21 2.349,93 Turbulento 0,005702 0,007351 -28,90 0,78 2,75 2,305 2.716,83 0,004962 0,006995 40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MOD. REOL	ÓGICA R ² 0,4316 DA MODE ÓGICA R ²	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ENSAIC V (m/s) 1,00 1,09 1,22	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa) 0,68 0,68 0,83	MEDIA E DETERMII (FRAÇÃO C O DE BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C O DE BOMBEA E DETERMII (FRAÇÃO C O A45,62 624,53 746,95 3.746,95	NAÇÃO DOS BROSSOS - IMENTO FLUXO Turbulento NAÇÃO DOS BROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,005880 0,005587 0,005239 S FATORES DE A 60% SÓLIDOS) FATORES fexp 0,011072 0,009305 0,009305	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005252 0,005041 0,004814 0,004814 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod 0,029378 0,025619 0,021420	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 -165,34 -175,32 -134,91	1,32 ADO) RAZÃO fexp/fmoo 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZÃO fexp/fmoo 0,038 0,36 0,43	
Power Law 0,6449 1.12 1.12 0.0472 0.000762 0.010868 40.01 0.001 1.87 1.67 1.472,21 0.000762 0.010868 40.01 0.71 2.11 1.91 1.783,53 0.006994 0.008971 -28,27 0.78 2.33 2.06 2.087,91 0.006176 0.007663 -24,07 0.81 2.51 2.21 2.349,93 Turbulento 0.005702 0.007351 -28,90 0.78 2.75 2.305 2.716,83 0.004962 0.006995 -40.97 0.71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00 1,09 1,22 1,51	COLÓGICA DS LOOP E DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa) 0,68 0,68 0,68 0,88 1,23	MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMIN (FRAÇÃO C DE BOMBEA Re _{MR} 544,62 624,53 746,05 1,048,18	NAÇÃO DOS ROSSOS - IMENTO FLUXO Turbulento NAÇÃO DOS ROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007295 0,007295 0,007295 0,006882 0,006882 0,006882 0,0065887 0,005587 0,005587 0,005587 0,005587 0,005587 S FATORES DE A 60% SÓLIDOS) FATORES fexp 0,011072 0,009305 0,009119 0,009754	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005041 0,004581 0,004339 0,004561 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod 0,029378 0,025419 0,021420 0,015265	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp}) ⁺ 100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp}) ⁺ 100 -165,34 -175,32 -134,91 -74,38	1,32 ADO) RAZÃO fexp/fmoc 1,07 1,12 1,22 1,31 1,31 1,29 1,25 1,24 ADO) RAZÃO fexp/fmoc 0,38 0,36 0,43 0,57	
1,91 1,91 1,78,53 0,006994 0,008971 -28,27 0,78 2,33 2,06 2,087,91 0,006176 0,00763 -24,07 0,81 2,51 2,21 2,349,93 0,005702 0,007511 -28,90 0,78 2,75 2,305 2,716,83 Turbulento 0,004962 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law RESUMO MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ²	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00 1,09 1,22 1,51 1,71	COLÓGICA DS LOOP E DS LOOP E DAP (kPa) 0,44 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E	MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 544,62 624,53 746,95 1.048,18 1,277,10	NAÇÃO DO: ROSSOS - MENTO FLUXO Turbulento NAÇÃO DO: SROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006587 0,005980 0,005587 0,00587 0,00587 0,00587 0,00587 0,00587 0,00587 0,00587 0,00587 0,000587 0,000587 0,000587 0,0000	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,005823 0,005252 0,005823 0,005252 0,005823 0,004581 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 DE ATRITO fmod 0,029378 0,025619 0,021420 0,015255 0,012528	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} fmod)/f _{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01	1,32 ADO) RAZÃO fexp/fmoc 1,07 1,12 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZÃO fexp/fmoc 0,38 0,36 0,43 0,57 0,68	
2,11 1,51 1,701,00 0,000000 0,000000 0,000000 0,22,27 0,70 2,33 2,06 2.087,91 0,0006176 0,007663 -24,07 0,81 2,51 2,21 2.349,93 Turbulento 0,005702 0,007351 -28,90 0,78 2,75 2,305 2.716,83 0,004962 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ² ÓGICA QUARTOR ÓGICA 0,6449	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ENSAIC V (m/s) 1,00 1,09 1,22 1,51 1,71 1,87	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E DS LOOP E ΔP (kPa) 0,68 0,68 0,68 0,68 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,52	MEDIA E DETERMII (FRAÇÃO C DE BOMBEA 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA VE BOMBEA 11.319,40 12.892,79 MEDIA E E BOMBEA VE BOMBEA VE NEDIA	MAÇÃO DOS BROSSOS - MENTO FLUXO Turbulento MAÇÃO DOS BROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006587 0,005587 0,000555 0,0005587	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,005823 0,005252 0,005823 0,005252 0,005841 0,004339 0,0004339 0,00439 0,004339 0,004339 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00439 0,00455 0,00000000	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01 -40,01	1,32 ADO) RAZÃO fexp/fmoc 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZÃO fexp/fmoc 0,38 0,36 0,43 0,57 0,68 0,71	
2,33 2,00 2,007,91 0,000176 0,00763 -24,07 0,81 2,51 2,21 2,349,93 1urbulento 0,005702 0,007351 -28,90 0,78 2,75 2,305 2,716,83 0,004962 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law MOD. REOL MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ² 0,6449	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ENSAIC V (m/s) 1,00 1,00 1,00 1,00 1,00 1,22 1,51 1,71 1,87 2,11	COLÓGICA DS LOOP E ΔP (kPa) 0,44 0,54 0,76 0,99 1,23 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E ΔP (kPa) 0,68 0,68 0,68 0,68 1,23 1,52 1,67 1,91 1,9	MEDIA E DETERMII (FRAÇÃO C ØE BOMBEA 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 544,62 624,53 1.048,18 1.277,19 1.472,21 1.472,21 1.782,55	NAÇÃO DOS BROSSOS - IMENTO FLUXO Turbulento NAÇÃO DOS BROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,00791 0,006882 0,006882 0,006882 0,005880 0,005587 0,005587 0,005239 FATORES FATORES fexp 0,011072 0,009305 0,009305 0,009305 0,009305 0,008464 0,007694	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,00500 0,00522 0,005041 0,004814 0,004561 0,004339 0,004198 TRITO (EXPERIM DE ATRITO fmod 0,029378 0,0025619 0,021420 0,015265 0,012528 0,010868 0,008921	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp} , fmod)/f _{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01 -74,38 -48,01 -28,97	1,32 ADO) RAZÃO fexp/fmoo 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,32 1,25 1,24 ADO) RAZÃO fexp/fmoo 0,38 0,36 0,43 0,57 0,68 0,77 0,68 0,77 0,78	
2,31 2,21 2,343,35 Turbulento 0,005/02 0,007/351 -28,90 0,78 2,75 2,305 2.716,83 Turbulento 0,004962 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ² 0,6449	ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ENSAIC V (m/s) 1,00 1,09 1,22 1,51 1,71 1,87 2,11 1,87 2,12 2,20	COLÓGICA DS LOOP E DS LOOP E 0,44 0,54 0,76 0,99 1,42 1,62 1,81 2,01 COLÓGICA DS LOOP E DS LOOP E DS LOOP E ΔP (kPa) 0,68 0,68 0,68 0,68 0,68 0,68 0,63 1,52 1,67 1,91	MEDIA E DETERMIN (FRAÇÃO C) E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMIN (FRAÇÃO C) E BOMBEA Re _{MR} 544,62 624,53 746,95 1.048,18 1.277,19 1.472,21 1.783,53 2.902,74	NAÇÃO DOS ROSSOS - IMENTO FLUXO Turbulento ROSSOS - IMENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007295 0,006882 0,006359 0,005587 0,005587 0,005239 S FATORES DE A 60% SÓLIDOS) FATORES fexp 0,011072 0,008754 0,008754 0,008644 0,00762 0,00894 0,00894	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005041 0,004581 0,004339 0,004581 0,004339 0,004581 0,004339 0,004581 0,004581 0,004581 0,004581 0,004581 0,0029378 0,025619 0,021420 0,015265 0,012528 0,015265 0,012528 0,016868 0,008971 0,008971	23,97 ENTAL E MODEL VARIAÇÃO % (((fexp. fmod)/fexp)*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((fexp. fmod)/fexp)*100 -165,34 -175,32 -134,91 -74,38 -48,01 -74,38 -74,02 -75,02	1,32 ADO) RAZÃO fexp/fmod 1,07 1,12 1,22 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZÃO fexp/fmod 0,38 0,36 0,38 0,36 0,43 0,57 0,68 0,71 0,78	
2,75 2,305 2.716,83 0,004962 0,006995 -40,97 0,71	RESUMO MOD. REOL MODELO REOLÓGICO Power Law MOD. REOL MODELO REOLÓGICO	ÓGICA R ² 0,4316 DA MODE ÓGICA R ÓGICA R ² ÓGICA 0,6449	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,20 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00 1,09 1,22 1,51 1,71 1,87 2,11 2,33 2,54	COLÓGICA DS LOOP E DS LOOP E DAP (kPa) 0,44 0,76 0,99 1,23 1,42 1,63 1,81 2,01 COLÓGICA DS LOOP E DS LOP E DS LOP E DS LOP E DS LOP E <t< td=""><td>MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Rê_{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re_{MR} 544,62 624,53 746,95 1.048,18 1.277,19 1.472,21 1.783,53 2.087,91 2.42,02</td><td>NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento NAÇÃO DOS ROSSOS - MENTO FLUXO</td><td>S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006589 0,005587 0,005759 0,00575</td><td>TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,00541 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,0025619 0,021420 0,015255 0,012528 0,010868 0,008971 0,007633 0,007633</td><td>23,97 ENTAL E MODEL VARIAÇÃO % ((f_{exp.} (mod)/f_{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f_{exp.} (mod)/f_{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01 -40,01 -28,27 -24,07 20 C</td><td>1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZĂO fexp/fmod 0,38 0,36 0,43 0,57 0,68 0,71 0,78 0,81 0,78 0,81 0,78 0,81 0,78 0,81 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,77 0,78 0,77 0,79 0</td></t<>	MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Rê _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMII (FRAÇÃO C DE BOMBEA Re _{MR} 544,62 624,53 746,95 1.048,18 1.277,19 1.472,21 1.783,53 2.087,91 2.42,02	NAÇÃO DOS ROSSOS - MENTO FLUXO Turbulento NAÇÃO DOS ROSSOS - MENTO FLUXO	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006882 0,006882 0,006589 0,005587 0,005759 0,00575	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,00541 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,0025619 0,021420 0,015255 0,012528 0,010868 0,008971 0,007633 0,007633	23,97 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} (mod)/f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % ((f _{exp.} (mod)/f _{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01 -40,01 -28,27 -24,07 20 C	1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZĂO fexp/fmod 0,38 0,36 0,43 0,57 0,68 0,71 0,78 0,81 0,78 0,81 0,78 0,81 0,78 0,81 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,77 0,78 0,77 0,79 0	
	RESUMO MOD. REOL MODELO REOLÓGICO Power Law MOD. REOL MODELO REOLÓGICO	DA MODE ÓGICA R ² 0,4316 DA MODE ÓGICA R ² ÓGICA 0,6449	ELAGEM RE ENSAIC V (m/s) 1,03 1,15 1,38 1,60 1,82 2,00 2,41 2,62 ELAGEM RE ENSAIC V (m/s) 1,00 1,09 1,22 1,51 1,71 1,87 2,11 2,33 2,51	COLÓGICA DS LOOP E DS LOOP E 0,44 0,44 0,76 0,99 1,23 1,42 1,61 2,01 COLÓGICA DS LOOP E 0,68 0,68 0,68 0,68 0,68 0,68 0,67 1,91 2,06 2,21	MEDIA E DETERMIN (FRAÇÃO C E BOMBEA Re _{MR} 3.011,03 3.574,97 4.749,20 5.979,92 7.308,97 8.465,68 9.820,72 11.319,40 12.892,79 MEDIA E DETERMIN (FRAÇÃO C DE BOMBEA Re _{MR} 544,62 624,53 746,95 1.472,21 1.783,53 2.087,91 2.349,93	NAÇÃO DOS BROSSOS - IMENTO FLUXO Turbulento NAÇÃO DOS SROSSOS - IMENTO FLUXO FLUXO Laminar Turbulento	S FATORES DE A 50% SÓLIDOS) FATORES fexp 0,007441 0,007295 0,007091 0,006882 0,006820 0,006587 0,005980 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,005587 0,000558 FATORES DE A 60% SÓLIDOS) FATORES fexp 0,011072 0,009305 0,009119 0,008754 0,008754 0,008762 0,006994 0,006176 0,005702	TRITO (EXPERIM DE ATRITO fmod 0,006932 0,006500 0,005823 0,005252 0,005041 0,004314 0,004314 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,004339 0,0025619 0,0225619 0,0225619 0,0225619 0,0225619 0,0225619 0,022565 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,0125265 0,007351	23,97 ENTAL E MODEL VARIAÇÃO % (((f _{exp})*100 6,83 10,90 17,89 23,70 23,84 24,30 23,72 22,35 19,87 19,27 ENTAL E MODEL VARIAÇÃO % (((f _{exp})*100 -165,34 -175,32 -134,91 -74,38 -48,01 -40,01 -28,27 -24,07 -28,90 -25,70 -28,90 -25,70 -26,90 -25,70 -26,90 -25,70 -26,90 -25,70 -26,90 -25,70 -26,90 -25,70 -26,90 -25,70 -25,90 -25,70 -25,90 -	1,32 ADO) RAZĂO fexp/fmod 1,07 1,12 1,31 1,31 1,32 1,31 1,32 1,31 1,29 1,25 1,24 ADO) RAZĂO fexp/fmod 0,38 0,36 0,43 0,57 0,68 0,43 0,57 0,68 0,71 0,78 0,81 0,78 0,81 0,75 0	

APÊNDICE H - RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO -FRAÇÃO FINOS

-

-	· · · · · · · · · · · · · · · · · · ·												
RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO FINOS - 30% SÓLIDOS)													
MOD. REOLÓGICA ENSAIOS LOOP DE BOMBEAMENTO FATORES DE ATRITO VARIAÇÃO % RAZÃO													
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod				
		0,70	1,01	2.762,74		0,043197	0,009895	77,09	4,37				
		0,94	1,04	3.709,96		0,024655	0,008182	66,81	3,01				
		1,05	1,29	4.144,11		0,024453	0,006965	71,52	3,51				
		1,24	1,72	4.893,99		0,023467	0,005634	75,99	4,17				
Disates	0.0040	1,38	2,05	5.446,54	Truck and a set of	0,022557	0,005173	77,07	4,36				
Bingnam	0,9946	1,46	2,24	5.762,28	Turbulento	0,022023	0,005004	77,28	4,40				
		1,58	2,53	6.235,90		0,021232	0,004845	77,18	4,38				
		1,65	2,70	6.512,17	7 5	0,020783	0,004764	77,08	4,36				
		1,75	2,95	6.906,85		0,020163	0,004690	76,74	4,30				
		1,90	3,32	7.498,86		0,019286	0,004590	76,20	4,20				
			N	1EDIA				75,30	4,11				

RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO FINOS - 40% SÓLIDOS)

MOD. REO	LÓGICA	ENSAI	OS LOOP E	DE BOMBE	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,73	2,26	2.619,38		0,081751	0,030894	62,21	2,65
		0,86	2,60	2.933,70		0,067642	0,023604	65,10	2,87
		0,97	2,87	3.431,38		0,058736	0,019417	66,94	3,03
		1,06	3,09	4.060,03		0,052857	0,017021	67,80	3,11
Pinghom	0 0000	1,17	3,34	4.400,55	Turbulanta	0,046927	0,014474	69,16	3,24
Dilignam	0,9900	1,29	3,60	5.003,01	Turbulerito	0,041635	0,012298	70,46	3,39
		1,38	3,79	5.526,88		0,038281	0,011056	71,12	3,46
		1,47	3,97	6.050,76		0,035346	0,010045	71,58	3,52
		1,53	4,09	6.548,44		0,033584	0,009435	71,91	3,56
		1,66	4,33	7.098,51		0,030210	0,008396	72,21	3,60
MEDIA								68,85	3,24

RESUMO DA MODELAGEM REOLÓGICA E DETERMINAÇÃO DOS FATORES DE ATRITO (EXPERIMENTAL E MODELADO) (FRAÇÃO FINOS - 50% SÓLIDOS)

				(, oeine oo			
MOD. REO	LÓGICA	ENSAI	OS LOOP E	DE BOMBE	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,60	4,20	834,50		0,210165	0,088868	57,72	2,36
		0,75	4,32	1.043,13		0,138349	0,074320	46,28	1,86
		1,13	4,60	1.571,64	Lominor	0,064896	0,035552	45,22	1,83
		1,24	4,80	1.724,64	Lamina	0,056236	0,031305	44,33	1,80
D : 1	0.0040	1,36	4,89	1.891,54		0,047638	0,026567	44,23	1,79
Bingham	0,9810	1,47	4,93	2.044,53		0,041068	0,023461	42,87	1,75
		1,54	4,96	2.141,89		0,037691	0,006035	83,99	6,25
		1,65	5,04	2.294,88		0,033345	0,005959	82,13	5,60
		1,88	5,28	2.614,77	Turbulento	0,026933	0,005809	78,43	4,64
		1,96	5,40	2.726,04		0,025302	0,005771	77,19	4,38
			N	IEDIA				60,24	3,23

RESUMO DA	MODELA	GEM REOL	ÓGICA E I	DETERMINA	ÇÃO DOS F	ATORES DE	ATRITO (EXI	PERIMENTAL E	MODELADO)
				(FRAÇAŬ F	INOS - 60%	SOLIDOS)			
MOD. REO	LÓGICA	ENSA	OS LOOP E	DE BOMBE	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,66	4,35	199,58		0,165842	0,383134	-131,02	0,43
		0,76	4,59	229,82		0,131702	0,279381	-112,13	0,47
		0,86	4,81	260,06		0,107909	0,229279	-112,48	0,47
		0,90	4,90	272,15		0,100344	0,207630	-106,92	0,48
		1,35	5,83	408,23		0,053114	0,109641	-106,43	0,48
Bingham	0,9352	1,55	6,21	468,71	Laminar	0,042914	0,099126	-130,99	0,43
-		1,58	6,27	477,78		0,041666	0,092801	-122,73	0,45
		2,05	7,07	619,90		0,027899	0,057206	-105,04	0,49
		2,16	7,24	653,16		0,025731	0,052729	-104,92	0,49
		2,26	7,38	683,40		0,023985	0,048971	-104,18	0,49
		2,37	7,54	716,67		0,022271	0,045663	-105,03	0,49
			M	IEDIA				-112,90	0,47

APÊNDICE I – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – COMPOSTA

RESUMO DA	A MODELA	GEM REO	LÓGICA E (FI	DETERMINA RAÇÃO COM	ÇÃO DOS FA POSTA - 30%	ATORES DE A % SÓLIDOS)	ATRITO (EXPI	ERIMENTAL E M	ODELADO)
MOD. REO	LÓGICA	ENSA	OS LOOP	DE BOMBEA	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,91	0,38	5.353,67		0,009569	0,009118	4,72	1,05
		1,06	0,54	6.257,68		0,009930	0,008740	11,98	1,14
		1,18	0,69	6.983,00		0,010281	0,008475	17,57	1,21
		1,25	0,78	7.406,89		0,010471	0,008333	20,42	1,26
Power Law	0,9890	1,35	0,93	8.013,37	Turbulento	0,010660	0,008149	23,56	1,31
		1,44	1,08	8.560,07		0,010849	0,008007	26,19	1,35
		1,56	1,27	9.290,20		0,010924	0,007822	28,40	1,40
		1,67	1,47	9.960,60		0,010999	0,007697	30,02	1,43
		1,75	1,67	10.448,80		0,011352	0,007585	33,19	1,50
			í	MEDIA	[1	21,78	1,29
RESUMO DA	A MODELA	GEM REO	LÓGICA E (FI	DETERMINA RAÇÃO COM	ÇÃO DOS FA POSTA - 40º	ATORES DE A % SÓLIDOS)	ATRITO (EXPI	ERIMENTAL E M	ODELADO)
MOD. REO	LÓGICA	ENSA	OS LOOP	DE BOMBEA	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,92	1,13	2.437,53		0,025542	0,009193	64,01	2,78
		1,01	1,32	2.767,94		0,024879	0,008803	64,62	2,83
		1,20	1,77	3.500,39		0,023499	0,008133	65,39	2,89
Dennelan	0.0074	1,31	2,06	3.944,53	Turkedente	0,023005	0,007805	66,07	2,95
Power Law	0,9874	1,39	2,26	4.276,20	Turbulento	0,022379	0,007601	66,04	2,94
		1,51	2,60	4.786,72		0,021849	0,007310	66,54	2,99
		1,59	2,79	5.135,40		0,021193	0,007151	66.77	2,96
		1,00	3,04	5,851,80		0,021149	0,007020	66 59	2 00
		1,75	3,29	3.851,80		0,020304	0,000871	00,39 CE 91	2,99
					~			05,61	2,95
RESUMO D	A MODELA	GEM REO	LOGICA E (FI	DETERMINA RAÇÃO COM	ÇAO DOS FA POSTA - 509	ATORES DE A % SÓLIDOS)	ATRITO (EXPI	ERIMENTAL E M	ODELADO)
MOD. REO	LÓGICA	ENSA	OS LOOP	DE BOMBEA	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,88	1,62	2.536,82		0,037560	0,005269	85,97	7,13
		1,00	2,06	2.882,75		0,037020	0,005135	86,13	7,21
		1,10	2,35	3.171,02		0,034965	0,005055	85,54	6,92
		1,21	2,70	3.488,12		0,033111	0,004920	85,14	6,73
Bingham	0,9965	1,32	2,99	3.805,23	Turbulento	0,030858	0,004868	84,23	6,34
-		1,40	3,24	4.035,85		0,029680	0,004809	83,80	6,17
		1,51	3,48	4.352,95		0,027446	0,004758	82,66	5,77
		1,61	3,87	4.641,22	-	0,026863	0,004687	82,55	5,73
		1,71	4,17	4.929,50		0,025022	0.004630	01,93	5,53
	I	1,01	4,30			0,020021	0,004000	81,70	5,46
								83,97	6,30
RESUMO DA	A MODELA	GEM REO	LÓGICA E (FI	DETERMINA RAÇÃO COM	ÇÃO DOS FA POSTA - 60º	ATORES DE A % SÓLIDOS)	ATRITO (EXPI	ERIMENTAL E M	ODELADO)
MOD. REO	LÓGICA	ENSA	OS LOOP	DE BOMBEA	AMENTO	FATORES	DE ATRITO	VARIAÇÃO %	RAZÃO
MODELO REOLÓGICO	R ²	V (m/s)	ΔP (kPa)	Re _{MR}	FLUXO	fexp	fmod	((f _{exp-} _{fmod})/f _{exp})*100	fexp/fmod
		0,65	2,26	999,02		0,087880	0,088205	-0,37	1,00
		0,75	2,55	1.152,71	1	0,074617	0,059982	19,61	1,24
		1,04	3,09	1.598,43	Laminar	0,047015	0,038893	17,27	1,21
		1,15	3,48	1.767,49		0,043333	0,034206	21,06	1,27
Binchom	0 0700	1,21	3,73	1.859,71		0,041899	0,029116	30,51	1,44
Dingnam	0,9/90	1,51	4,66	2.320,79		0,033630	0,006086	81,90	5,53
		1,63	4,90	2.505,23		0,030380	0,005990	80,28	5,07
l I		1,73	5,34	2.658,92	Turbulento	0,029396	0,005939	79,80	4,95
		1,88	5,74	2.889,46		0,026720	0,005831	78,18	4,58
		2,28	7,01	3.504,24		0,022204	0,005635	74,62	3,94
				MEDIA		-		48 29	3 02

APÊNDICE J – RESULTADOS DA MODELAGEM DOS FATORES DE ATRITO – CALIBRAÇÃO COM ÁGUA

	Deterr	ninação	do fator	de atrito	experime	ental (f _{exp}))
Fração	% Sólidos	ΔP (kPa)	D (m)	ρ (kg/m3)	L (m)	V (m/s)	f _{exp}
		0,294				1,20	0,005198673
		0,686				2,01	0,004323542
ÁGUA	0	0,932	0 0508	008	1	2,41	0,004081532
AGOA	0	1,030	0,0008	330	Ŧ	2,60	0,003875934
		1,177				2,79	0,003846862
		1,667				3,52	0,003423713
$ ho_{\text{água}}$ (20oC ϵ	e 1 atm) = 0	,9982071 g	/cm3 = 998	8,2071 kg/m	า3		
Eq. Nikurads	e $\frac{1}{\sqrt{f}}$:	= 4,0log(<i>R</i>	$e\sqrt{f}$) - 0,	40	(2.64)		
Re = $\frac{DV\rho}{\mu}$							
µágua (20oC	e 1 atm) =	0,001001	kg/(m.s) c	ou Ns/(m2)			

Determinação do fator de atrito modelado (f _{mod})											
Fração	% Sólidos	Modelo	μ	n	D (m)	ρ (kg/m3)	V (m/s)	Re			
	0	Newtoniano	0,0010	-	0,0508	998	1,20	60777,67			
							2,01	101802,59			
ÁGUA							2,41	122061,81			
AGUA							2,60	131684,95			
							2,79	141308,08			
							3,52	178281,16			

f _{mod} (Eq. Nikuradse)	(((f _{exp} -f _{mod})/f _{exp})*100 (Eq. Nikuradse)	f _{mod} (Lei Universal Prandtl)	((f _{exp} -f _{mod})/f _{exp})*100 (Lei Universal Prandtl)	Eq. Blasius	((f _{exp} -f _{mod})/f _{exp})*100 (Eq. Blasius)	
0,00500581081	3,71	0,0050067459094	3,69	0,005031426	3,22	
0,00448363732	-3,70	0,0044844346578	-3,72	0,004422699	-2,29	
0,00431858788	-5,81	0,0043193430650	-5,83	0,004226512	-3,55	
0,00425217968	-9,71	0,0042529180922	-9,73	0,004147086	-7,00	
0,00419177607	-8,97	0,0041924993245	-8,98	0,004074603	-5,92	
0,00400129797	-16,87	0,0040019740613	-16,89	0,003844596	-12,29	

	APÊNDICE K -
DOS SÓLIDOS NA UNIDADE DE LOOP DE BOMBEAN	(- RESULTADOS DA AMOSTRAGEM DO GRADIENTE D
ENTO	E FLUXO

			•		-	•				
	Peso úmido	Peso seco	Conc. Peso (C _{wi})	Λ (Ároa cm^2)	C _i / A _i (%/cm ²)	P _{CS} (%)	Teores em FRX			
	(g)	(g)	(%)	A _i (Alea - chi)			$AI_{2}O_{3}(\%)$	$Fe_{2}O_{3}(\%)$	SiO ₂ (%)	TiO ₂ (%)
Торо	1.123,50	614,96	54,74	7,57	7,23	26,02	57,61	7,49	3,60	1,89
Meio	1.242,10	770,65	62,04	5,13	12,10	43,56	57,94	7,49	3,59	1,84
Base	848,60	542,91	63,98	7,57	8,45	30,42	57,42	7,66	3,61	1,94
TANQUE	3.214,20	1.928,52	60,00				57,61	7,73	3,67	2,02

Polpa grossos (+150# a +48#) - Coleta de amostras no ponto correspondente a V = 1,51m/s

Polpa finos (-150# a - 400#) - Coleta de amostras no ponto correspondente a V = 1,35m/s

	Peso úmido	eso úmido Peso seco	Conc. Peso (C _{wi})	A _i (Área - cm²)	C _i / A _i (%/cm ²)	P _{CS} (%)	Teores em FRX			
-	(g)	(g)	(%)				Al ₂ O ₃ (%)	$Fe_{2}O_{3}(\%)$	SiO ₂ (%)	TiO ₂ (%)
Торо	481,34	279,73	58,12	7,57	7,68	27,99	52,73	12,01	5,71	1,93
Meio	1.022,18	615,35	60,20	5,13	11,74	42,82	52,80	12,08	5,77	1,93
Base	1.171,29	709,80	60,60	7,57	8,00	29,19	52,92	12,07	5,71	1,94
TANQUE	2.674,80	1.604,88	60,00				53,12	11,79	5,60	1,87

Polpa composta (+48# a - 400#) - Coleta de amostras no ponto correspondente a V = 1,51 m/s

	Peso úmido	Peso seco	Conc. Peso (C _{wi})	\wedge (Ároa am^2)	$C_i / A_i (\%/cm^2)$	P _{CS} (%)	Teores em FRX				
	(g)	(g)	(%)	A _i (Area - Chi)			Al ₂ O ₃ (%)	Fe_2O_3 (%)	SiO ₂ (%)	TiO ₂ (%)	
Торо	705,20	403,67	57,24	7,57	7,56	27,46	54,53	10,57	4,95	1,93	
Meio	970,48	590,73	60,87	5,13	11,87	43,12	54,38	10,65	4,99	1,94	
Base	815,27	500,17	61,35	7,57	8,10	29,43	54,48	10,63	4,97	1,94	
TANQUE	2.490,95	1.494,57	60,00				54,11	10,96	5,10	1,96	